
NASA Contractor Report . ,178391

DIAGNOSTIC EMULATION:
IMPLEMENTATION AND USER’S GUIDE

-~ - -
~ - ~

(NASA-(3-17839 1) DIlAGlOOSTIC EHULATXOY : N88-14638
IflPLEIlENTATIOI AND USEE’S G U I D E {PaC
Kentron) 172 p C S C L OPB

Unclas
G 3 / 6 1 0114264

Bernice Becher

PRC Kentron, Inc.

Hampton, Virginia 23666

Contract NASI-1 8000
December 1987

National Aeronautics and
Space Administration

langley Research Centeu
Hampton, Virginia 23665

I

\

TABLE OF CONTENTS

Acknowledgement ..
1 . Introduction ...
2 . General Description ..
2.1 Overview: General Principles and Assumptions
3 . System Structure ...
3.1 System Flow of Control
3.2 Emulation Flow of Control
4 . Implementation of Diagnostic Wlation Technique
4.1 Overview of Implementation
4.2 Models ..
4.2.1 Gate-level Network Model
4.2.1.1 Simple Gates ..
4.2.1.2 Tri-State Devices
4.2.1.3 Flip-Flops ..
4.2.1.4 Event-Driven Feature
4.2.2 Functional Subsystem Model
4.3 Data Structures ...
4.3.1 External Registers ..
4.3.2 Network Connections
4.3.4 Stacks ..
4.3.5 Events ..
4.3.6 Actions ...
4.3.7 Master Action Control Register
4.3.8 Action Control Block
4.3.9 Emulated Memories ...
4.3.10 Action Descriptions
4.3.10.1 Write Memory Action
4.3.10.2 Read Memory Action
4.3.10.3 Operations Action
4.3.10.3.1 Stop Run ...
4.3.10.3.2 Stick Gate at 0/1
4.3.10.3.3 Lift Gate Fault
4.3.10.3.4 Insert Fault in ROM
4.3.10.3.5 Lift Fault from ROM
4.3.10.3.6 Stop Batch ...
4.3.10.4 External Inputs Action
4.3.10.5 External Outputs Action
4.4 Algorithms ..
4.4 .1 Initialization Algorithm
4.4.2 Functional Emulation Algorithm
4.4 .3 Gate-level Algorithm
4.4.3.1 Description of Device "Count"

4.3.3 Hardware Description Matrix

5 . User's Guide ...
5.1 Installation of Programs
5.1.1 Installation of Emulator on Vax (Using VaxpS):
5.1.2 Installation of Emulator on QM-1
5.1.2.1 Restore Emulation System From Tape to Disk:

V

1

3
3

5
5
7

9
9
9
9

10
10
10
11
11
12
12
12
1 4
15
16
17
18
18
18
19
19
2 1
23
24
24
24
24
25
25
25
28
30
30
30
3 1
32

34
34
34
36
36

.

5.1.2.2 Compile & Link Easy Programs:.Vax<->QH-l Transfers
5.1.2.3 Generation of program to write External Outputs to Disk .
5.1.2.4 Generation of Microcode Driver
5.1.2.5 Generation of Nanocode -lator
5.2 Data Preparation ..
5.2.1 Suggested QM-1 Template
5.2.2 Setup of Functional Memories
5.2.3 Setup of Faults ...
5.2.4 Setup of External Inputs
5.2.5 Setup for Producing External Outputs
5.3 Program Modifications
5.3.1 Implementation of User-Defined Action
5.3.2 Instructions for Increasing Array Sizes
5.4 Running the System ..
5.4.1 Initialization of Target Hardware on Vax
5.4.1.1 General ...
5.4.1.2 Input Files ...
5.4.1.2.1 Netlist File ..
5.4.1.2.2 Memories File ...
5.4.1.2.2.1 Sample Memories File
5.4.1.2.3 Initialization Run-Time Options File
5.4.1.2.3.1 Sample Initialization Run-Time Options File
5.4.1.2.3.2 Record Descriptions for Init . Run-Time Options File .
5.4.1.2.4 Device Comments F i l e
5.4.1.2.4.1 Sample.Device Conrments File
5.4.1.3 Initialization Output Files
5.4.1.3.1 Initialized System State File
5.4.1.3.2 Initialization Text Output File
5.4.1.3.3 Initialization Matrix File
5.4.1.3.4 Initialization External Registers File
5.4.2 Emulation on Vax ..
5.4.2.1 General ...
5.4.2.2 -lation Input Files
5.4.2.2.1 Initialized System State File
5.4.2.2.2 Emulation Run-Time Options File
5.4.2.2.2.1 Sample Emulation Run-Time Options File
5.4.2.2.2.2 Record Descriptions for -1 . Run-Time Options File .
5.4.2.2.3 Fault List File
5.4.2.2.3.1 Contents of the File
5.4.2.2.3.2 Structure of the File
5.4.2.2.3.3 Sample Fault List File
5.4.2.2.4 External Input Files
5.4.2.2.4.1 Contents and Structure of External Input Files
5.4.2.2.4.2 Sample External Input Files
5.4.2.3 Emulation Output Files
5.4.2.3.1 Text Output File
5.4.2.3.2 Stack Outputs ...
5.4.2.3.3 External Output Files
5.4.2.3.3.1 Contents and Structure of External Output Files
5.4.2.3.3.2 Sample External Output File
5.4.2.4 Running Emulator on Vax
5.4.2.5 External Outputs Postprocessing
5.4.3 mlation on QM-1 ...
5.4.3.1 Creation of QM-1 Files:
5.4.3.2 Data Preparation

37
38
38
39
40
40
43
45
46
46
47
4 7 .
47
48
48
48
50
50
54
56
57
57
60
64
65
66
66
66
67
67
68
68
69
69
69
70
72
76
76
78
80
81
81
81
82
82
85
87
87
87
88
89
91
91
92

.

5.4.3.3 TO ~ u n Emulation on QM-1:
5.4.3.4 To Send QM-1 External Outputs to Vax
5.4.4 Vax <-> QM-1 File Transfers
5.4.4.1 Vax to QM-1 Transfers
5.4.4.2 @I-1 to Vax Transfers
6 . Bibliography ...
6.1 References ..
List of Figures

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17

Appendices

Appendix A

Overall Structure of the Technique
System Flow of Control
Emulation Flow of Control
Flip-Flop Model
External Registers
Network Connections
Hardware Description Layout
Stack ..
Write Memory Action Structure
Read Memory Action Structure
Fault Buffer Layout
External Input Action Structure
External Output Action Structure
"Count" Initialization
QM-1 Memory Template
Sample Template for Faulting Device
Valid Op Codes

Additional Figures
Event. Free Space. and Action List Layouts
Event and Free Space Record Layouts
Action Control Block Layout

Flip-Flop Trigger Chart
Fortran Initialization 1/0 Units
Fortran Emulation I/O Units
User Modifications for New Action
Fortran Parameters & Variables. by COmnOn Label
Fortran Parameters & Variables. by Variable Name
Flip-Flop Decision Table for QM-1 Version
QM-1 Emulator Files

Scheduling an Event
Scheduling an Action

.... ...
QM-1 Utility Files
QM-1 Files for Transfers with Vax
Device Header Layouts
Legends for Header words
Internal Connector Layouts
Legends for Internal Connectors
External Connector Layouts
Legends for External Connectors

93
94
94
94
95 *

97
97

4
6
8
10
12
14
15
16
20
22
24
27
29
33
40
45
77

A-1
A-2
A-3
A-4
A-5
A-6
A-7
A-8
A-9
A-11
A-16
A-21
A-22
A-23
A-24
A-25
A-26
A-28
A-29
A-31
A-32

Memory Data Structures Layout
Rrmlated Mewry Layout
General Action Layout
Write Memory Action
Read mmory Action
Stop Action
Operations Action
External Input Action
Q. Qbar Flip-Flop Pair External Output Action

Appendix B Sample Initialization Text Output File

Appendix C Sample Netlist Pile

Appendix D Sample Ebulation Text Outputs

Appendix E Terms and Abbreviations

A-33
A-34
A-35
A-36
A-31
A-30
A-39
A-40
A-41
A-42

-iv-

Acknowledgement

The author wishes to acknowledge Earle Migneault of NASA - Langley
Research Center who dreamed up the concept and the detailed design of the
Diagnostic -lation process.
Scott Mangum, and Charlotte Scheper of Research Triangle Institute for
providing some of the examples used in this document.

The author also wishes to thank Robert Baker,

Bernice Becher
September, 1987

-V-

1 Introduction
In the future, computer systems will be doing more of the tasks that are

now performed by humans.
Sophisticated computer systems will increase their share of the tasks involved
in the control and flying of the aircraft.
of the 1990's more efficient and profitable, new and advanced technologies will
be used in their design and construction.
caused by these new technologies and thus to speed their acceptance.
Systems Validation Methods Branch in the Information Systems Division, is doing
research in order to develop methods for fully integrating guidance and control
functions, to identify system architectural concepts, and to establish a
creditable validation process for advanced digital system designs.
contractor, PRC Kentron, is involved in this effort by providing support in the
development of software to accomplish the latter goal, namely the development of
methods for the analysis of the reliability of highly reliable, fault tolerant
digital avionics systems. These advanced digital systems must be significantly
more reliable than the systems now in use. What is generally meant by stating
that the system must be highly reliable is that the probability that a system
containing no failed components at the start of operation will fail during the
first ten hours of operation will be less than approximately
that digital computer systems that are to be highly reliable must be fault
tolerant. Fault tolerance is the characteristic of the hardware and software
architecture which allows the system to continue operating correctly in spite of
the occurrence of physical faults, i.e., the detection of faults and the
recovery to normal operation is handled automatically by the hardware and
software and does not require manual intervention.
must be carried out within a specified period of time and must be done
concurrently with the controlling of the aircraft.

Fault tolerant digital systems are implemented by first identifying the
reliability goals of the system, and then selecting and incorporating fault-
detection and recovery algorithms into the original design of both hardware and
software.
components and algorithms which can reconfigure components in case of failures.

problem is how to evaluate the reliability of the system.
approaches to this problem.
techniques.
methods, is the use of emulation techniques.

This latter approach is currently being studied at the Langley Research
Center. The idea being studied is that rather than basing reliability analysis
on manufacturer's supplied data, or on expected probability distributions of
failures of components to determine the response of a system to faults, a gate-
level representation of the system is emulated. An algorithm has been developed
to emulate any network of logic gates, flip-flops and tri-state devices.
algorithm is independent of the particular piece of hardware being emulated. A
description of the particular target digital system is fed to a translator which
converts the description to a form which the emulator can process.
processing of this representation of the target hardware by the software-
implemented algorithm consists of the gate-level emulation of the target
hardware. During this emulation, faults can be injected, and their effects
studied.

The particular algorithm was developed with a major objective being
conservation of host time and memory.

The area of commercial avionics is no exception.

In order to make commercial aircraft

Ways must be found to reduce the risk
The

The

It is clear

This detection and recovery

The tolerance to faults is usually accomplished with redundancy of

Once a fault tolerant digital system has been constructed, an important
There are two

One approach is the use of analytic modeling
A second approach which can be used in conjunction with analytic

The

The

The speed is important because the target

-1-

system must be a l l 4 to run for lengthy time periods, and the conservation of
space is necessary because of the large number of gates, flip-flops, and tri-
state devices in any modern digital system.
model for all types of gates, i.e., "AM)", "OW@, "m", "NOR", " O T " 8 "XIOBI",
and a single generalized model for all types of flip-flops. nese general
models allow for efficient use of cmputer memory. Time is conserved by
processing only those devices in a given cycle whose inplt(s) have changed
during the previous cycle.

the observation of the response of the system to these faults.
controlled and accelerated testing of system reaction to hardware failures in
the target machine.

AS an initial experiment, a horizontally-microprogramable computer, the
Nanodata Qm-1, was chosen as the host system.
at the microcode level to take advantage of the parallel capabilities of the
host lnachine and to exploit the speed advantages of executing code at the most
primitive level of the host cormplter.
description and fault-injection data, as well as all post-processing of fault
data is performed on a Digital Equipment Corp. VAX 11 which is interfaced to the
-1

The emulation algorithm has been used to emulate a simplified model of a
Voy" computer, the central processing unit of the Bendix BDX930, and the
conmumicator interstage unit of the Fault Tolerant Processor. Working emulators
are resident in a QM-1 computer and a Vax computer in AI-, the Avionics
Integration Research Laboratory, at the Langley Research Center. These
emulators will be used as general reliability analysis tools for highly
reliable, fault tolerant avionics system. A complete and detailed discussion of
the concepts inherent in the technique is given by Migneault[2]. The remainder
of this document will describe in detail haw the algorithm was implemented at
-C and instructions on how one goes about using the system.

The algorithm employs a general

This algorithm allows for the insertion of faults into the system, and for
This allows for

The emulation algorithm was coded

All preprocessing of the hardware

-2-

2. General Description
2.1 Overview: General Principles and Assumptions

The Diagnostic Emulation Technique is a general technique which allows for the
emulation of a digital hardware system. The technique is general in the sense
that it is completely independent of the particular target hardware which is
being emulated. A description of the hardware to be emulated is presented to
the emulation program in the form of input data.

The technique is a hybrid one in that parts of the system (the network) are
described and emulated at the logic or gate level, while other parts of the
system (the functional subsystem) are described and emulated at the functional
level in order to save time and unnecessary complexity.
of the emulation program as to which parts of his system are to be emulated at
the gate level and which parts are to emulated at the functional level.

It is up to the user

The network to be emulated at the gate level consists of a set of devices
(gates, flip-flops, and tri-state devices), and a set of connections among
these devices.

Each input and output to or from a device may assume one of two values, namely
high (represented by 1) or low (represented by 0).

The basic unit of time(t) used by the emulator is the time it takes for the
input signals on a logic device to be propagated through to the output of that
device.
devices in the network is the same and remains constant throughout the
emulation.
although unit delay is assumed for this implementation.

It is assumed in this technique that the propagation time for all

This is not an inherent limitation of the diagnostic emulator,

The technique allows for a very flexible method in which the gate-level network
and the functional subsystems can communicate with each other.
also allows the user to define any type of subsystem he wishes as long as he
can describe it in terms of a data structure and a subprogram module that
operates on the data structure and optionally also operates on the gate level
network.

This method

The state of the entire system at any given time consists of state descriptions
of all logic devices in the network, state descriptions of all connections
among devices, and a state description of the functional subsystem.
emulator must have given to it at t-1 the initial state of the entire system.
The emulation then consists of a series of iterations, one for each time step.
Given the current state of the system at time T, the emulator calculates the
new state of the system at time T+1. It continues these iterations until it
reaches the stop time specified by the user.

The

The emulation technique is event-driven in the sense that for a given
iteration, only those logic devices are processed whose output values have
changed during the previous iteration.

Important functional capabilities which have been incorporated into the NASA
LaRC implementation are:
at user-specified times into the logic gates and/or into the ROMS, the ability
to input to the digital logic at user-specified times from sources external to

the ability to insert and/or remove stuck-at faults

-3-

the simulation, and the ability to m t w t from emulated logic to sources
external to the emulation either at user-specified equally spaced time periods
or at times controlled by the internal logic.
are basically independent of any particular implementation. All of the
characteristics which have been descriM above are general concepts of the
technique and are independent of any particular implementation.
structure of the technique is depicted in Figure 1.

The technique and its concepts

The overall

i

Initial
System

J mr> UTI

System
State

Program Step n
0 Data File

Overall Structure of the Technique
Figure 1

-4-

3. System Structure
The emulation system as it has been implemented at NAsA/LaRC consists of

Part 2 is the

two parts.
consistent initial state for the target hardware and generates this initial
hardware state in the binary form required by the second part.
emulator.
emulation as per the user's specifications.

The first part is the "Initialization" system which calculates a

The emulator begins with the initial machine state and performs the

The initialization program requires as input a description of the gate-
level network in the Diagnostic Emulator Netlist Format (DEW), and a list of
the initial contents of any memories being emulated at the functional level, in
the Diagnostic Emulator Memories Format (DEMF).
described in detail in Section 5.4.1.
provide these two required inputs to the initializer in the formats required.
It is thus necessary for the user to provide some sort of "preprocessor" to
generate the netlist in DENF format and the memories in DEMF format.
two preprocessors have been developed to provide these descriptions to the
initializer in the required format.
WER computers in the Analysis and Computation Section and uses a NASA-
developed netlist language for its input.
developed by the Research Triangle Institute(l1 and uses Futurenet as its input
language.

This document does not include any discussion of preprocessors.
complete description of the DENF and DEMF formats is given in Section 5.4.1.2.
Thus a user can generate his own translator or preprocessor to translate from
the language of his network description and from his memory format to the
required formats.

The initialization program produces the complete network description and
the memories' contents in the binary form required by the emulator.
addition, the initializer calculates (if possible) a consistent initial state
for the entire system.

initializer together with other user-supplied information to perform the
emulation.

.
The Initialization Program is

It is the user's responsibility to

To date,

The first was developed at NASA for the

The second preprocessor was

A

In

The emulator then uses the initial machine state generated by the

3.1 System Flow of Control
The overall program and data flow for the preprocessor, initializer, and

The general idea is that for a given target emulator are shown in Figure 2.
machine to be emulated, the preprocessor and initialization systems need be run
once (or several times if errors or inconsistencies exist), i.e., until the
system is successfully initialized. At that point the initial state of the
system has been saved in a binary form for the emulator, and the emulator can
be run as many times as desirable, varying its inputs, without having to rerun
the preprocessor or initialization systems.

I

I

U

L

A

T
J .I J

1

-> Diagnostic -ator

J

I

J
I 1

J
I I

J J
I

<-

H

I

0

N

3.2 Emulation Flow of Control
One of the user-supplied inputs to the emulator is the "Fault File".

data in the fault file controls the emulator. All the data in one fault file
is referred to as a "Batch".
individual fault lists, each of which causes one "Ftun" to be executed. A "RW"
is an emulation which begins at time t-1 and continues until a user-specified
stop time. ~n individual fault list describes when and what kind of faults are
to be inserted for the run, and when the run is to stop. Each run in the batch
begins by re-initializing to the initial state as defined by the initialization
program. The differences
from one run to another within the same batch are caused by the different fault
list for each run. The fault file is described in detail in Section 5.4.2.2.3.
The batch is completed when all fault lists have been processed, or in other
words, when the last run has completed. In surmrary, a batch consists of many
runs. For each run the gate-level network and the functional subsystems are
the same.
same. The faults injected and the stop time may vary for each run. The flow
of control during which the emulator processes one batch is shown in Figure 3.

The

The fault file consists of any number of

Each run makes use of the same external inputs file.

The initial state of the machine and the external inputs are the

-7-

+
Initialize Batch

(do total restore of initialized system)

.I

J.

.I

->

I Do Functional Emulation
for this time

(do partial restore of initialized system)
If first run this batch, get user run parameters

4

Do End-of-Run Processing

(more runs) I (no more runs)
' I

J.

> I-'

Emulation Flow of Control
Figure 3

Do Gate-level Emulation
for this time

-8-

4. Implementation of Diagnostic Emulation Technique
4.1 Overview of Implementation

The Nanodata QM-1 computer is a high-speed general-purpose digital
It was chosen for the first implementation of the Diagnostic computer.

Emulation Technique because at the lowest level it is horizontally
microprogrammable.
description of the QM-1 arch'itecture.
NAsA/LaRC contains three levels of memory. At the highest level is the main
store memory which consists of 500K of 18-bit words.
consists of 40K of 18-bit words. At the lowest level is the nanostore which
consists of 1K of 360-bit words.
while nanocode is stored in the nanostore.

emulates the gate-level logic was written in nanocode at which level the
primitives of the QM-1 hardware are controlled in a parallel manner, i.e.,
during each t-step of the QM-1 many different nanoprimitives may be executed
simultaneously. The QM-1 has a nanoassembler which was used to assemble the
nanocode which implements the gate-level emulation algorithm. The algorithm
which performs the functional parts of the emulation was written in microcode
(on the QM-1, each microcode instruction is carried out by a sequence of
nanocode instructions and is therefore one level higher than nanocode). The
microcode language used was "Multi", and the functional algorithm or "Driver"
was assembled with the Microcode Assembler.
namely "Emul" and "Iemul" were defined as extensions to the "Multi" language,
and when used in the Driver, cause the appropriate parts of the nanocoded gate-
level algorithm to be executed. "Iemul" causes the initialization of the gate-
level data structures to be carried out, and llEmul" causes one time period or
one stack of the gate-level network to be processed.
extension codes then appear as instructions in the microcoded Driver.
nanocode and microcode are combined into an executable form as described in
Section 5.1.2.

The front end program for the emulator, namely the Initialization program,
was written for the Vax 11 in Fortran. Because of the need to check the
results of the QM-1 emulation, an emulator was also written in Fortran to run
on the Vax. The Vax emulator was naturally much simpler to write than the QM-1
emulator but runs about 36 times slower than the QM-1 implementation.
result is that the user now has two options as to how he will run the emulator.
He must run the Initializer on the Vax, but then has the choice of whether to
do the actual emulation on the Vax or on the QM-1.
disadvantage of the added complexity of using the QM-1 against the advantage of
the gain in speed.
implemented first, and that the Vax emulator was written to conform to the Qm-1
18-bit word, and has basically emulated the control store and main store of the
QM-1 .

See the QM-1 Hardware Level User's ~anual[3] for a detailed
It should be noted that the QM-1 at

The control store memory

Microcode is stored in the control store,

The emulator was implemented on the QM-1 as follows: The algorithmwhich

Two new microcode instructions,

Both of these multi-
The

The

The user must weigh the

It should be pointed out that the QM-1 emulator was

4.2 Models
4.2.1 Gate-level Network Model

Any network to be emulated at the gate level consists of a set of gates, flip-
flops, and tri-state devices, and a set of the connections among these devices.
Any input or output to or from a device may assume one of two values, namely
high (represented by 1) or low (represented by 0).

-9-

4.2.1.1 Simple Gates

A gate may be any of the following types: AM), "L), a 8 NOR,
Normally, a simple gate is enabled; hak~wer, the faulting of a gate (output
stuck at 1 or 0) is implemented by disabling the gate.

XIOR, NXOR.

4.2.1.2 Tri-State Devices

A tri-state device is any of the simple gates listed above, but in addition has
an enable/disable input.
consistent with the inputs) of the tri-state device is always kept current,
but if the device is disabled, its internal value will not he propagated to its
output line, but rather its output line will be stuck at either 0 or 1 (the
value chosen by the user in the netlist for that particular tri-state device)
until the tri-state is enabled.

The internal value (namely the output value

4.2.1.3 FIIP-FIoPs

A general d e l for a flipflop is used by the algorithm.
flop is not modeled at the gate level.
as shown in Figure 4.

Note that a flip
The general model for the flip-flop is

P C T L

> J Q
> K

P preset
C clear
T clock trigger

> L latch
J input 1
K input 2

D D connection1
R indeterminant flag l2
U indeterminant flag 22

A "D" connection is merely one in which the K input is always
the complement of the J input. * See A-29, Legends for Internal Connectors,
A-6, FlipFlop Trigger chart, and Migneault[2]

Flip-Flop Model

Figure 4

~y using these lines appropriately, all of the useful edge-triggered types of
flip-flops can be modeled, as described by Migneault(2J.
accomodates only one output, namely the Q output.
desired, it can be obtained by adding an additional flip-flop with the inputs

Note that this model
If the QBAR output is

-10-

reversed from those of the Q flip-flop.
flip-flop set.
be active high or active low, as defined by the user.
flip-flops in a network must be either active-low or active-high.
trigger for each flip-flop can be either upward edge-triggered or downward
edge-triggered, again as specified by the user.
choice for each flip-flop is individually controlled.
network, a data structure exists which at all times reflects the state of that
device.

See A-42 for an example of a Q, QBAR
The preset and clear lines for all flip-flops in a network can

Note, however, that all
The clock

In this case, however, the
For each device in the

4.2.1.4 Event-Driven Feature

The emulator technique is event driven; that is, during each time period a
given device will be processed only if a specific event has occurred during the
previous time period, namely that device's output value has changed.
device whose output value did not change during the previous period need not be
examined since it cannot affect any other device.

Any

4.2.2 Functional Subsystem Model

Any subsystem which is to be emulated at the functional level is
implemented with a data structure (called an action data structure)
representing its state at any given time, and with an action subroutine module
which performs the specified function. Some examples of functional emulations
which have been implemented on this system are ROMS, RAMS, fault injection and
removal,
network.

In order to implement functional emulation, event scheduling is used.
While the gate-level network emulation is synchronous in the sense that at each
time interval the devices are processed whose output values changed during the
last time step, the functional emulation is asynchronous in that functional
events do not necessarily occur at fixed time intervals and therefore must be
scheduled. An event list
contains all events currently scheduled to be executed at specific times, and a
free space list contains a list of memory slots currently available for use by
the event list. Because the number of scheduled events grows and shrinks,
there is dynamic allocation of space between the two lists, i.e., space is
taken from and returned to the free space list according to the space
requirements of the event list.
action list.
in the event.

external inputs to the network, and external outputs from the

To provide for this, two data structures are used.

Each event scheduled points to the head of an
Each action in that list is to be executed at the time specified

-11-

4.3 Data Structures

4.3.1 External Registers

In ueneral. external recristers are used when data is to be conaarnicated
between h e gati-level emulaiion and the functional emulation.
direct that the emulator set up a block of contiguous external registers in
control store and/or a block of external registers in the main store of the QH-
1. Each external register is an eighteen-bit word in the QM-1 memory.
block of external registers, no matter where it may be in the QM-1 memory, for
the user’s purposes, is labeled beginning with register number 1, and the rest
of the block is numbered consecutively.

An external register can receive its value in two different ways.
user can specify in the netlist that the output of any particular device in the
network feed into any bit(s) in one or more external registers. Thus during
the emulation the bit in the external register at all times is a copy of the
output line of the associated device. This is a technique for collecting in
one contiguous group of bits in the QM-1 memory, the output values of any
selected set of devices.

An external register can also receive its value from the functional
subsystem emulation during the execution of an “action”, and typically could
then be used by any other action. An example of the use of external registers
is the data and address registers used in the implementation of nmmory reads
and writes.

The user may

Each

The

This use is shown in Figure 5.

See Figures 9 and 10 for illustrations of these uses.

T= < J <- I <
device x device y device w

I
B i t P o s i t i o n s &

I I <
& & &

External Register

4.3.2 Network Connections

There are two types of connections within a gate-level network, namely
internal connections and external(”pseudott) connections.
connection is one which goes from the output of a network device to the input
of a network device which may be the same device as the source device or a
different one.
connection are devices within the network. In the case of an external
connection,

An internal

In any case, both the source and destination of an internal

the source is a device within the network, but the destination is

-12-

an external register in that it does not exist within the network being
emulated, but is a register in the QM-l'created as a means for implementing the
functional part of the emulation.
goes from the output of some device in the network to a specified bit in same
external register. Once this connection is set up in the netlist, then during
the emlation the bit in the external register at all times is a c o w of the
output line of the associated device. Thus this is a technique for collecting
in one contiguous group of bits in the Qm-1 memory, the output values of any
selected set of devices.
in the netlist and may be used for any functional subsystem desired. To date,
they have been used to implement memory reads and writes by emulating the data
and address registers and for external inputs and outputs, again by serving as
the data registers.
outputs by holding the values on the control lines which then are used to
trigger the particular action.
connections.

An external connection is then one which

External register connections are defined by the user

They are also used in memory reads and writes and external

Figure 6 shows diagrams of both types of

-1 3-

Internal Connection 0
.Device x . >. Device y

1 4 13 12 11 1 0 9 8 7 6

External Connection

I E x t e r n a l R e g i s t e r I
Network Connections

Figure 6

4.3.3 Hardware Description Matrix

The hardware description matrix is a binary representation of the entire
network of devices and interconnections among the devices. This description of
the network of gate-level logic is represented in the control store of the (34-1
by a set of Device Records, each record representing one device in the target
network. A device can be a gate, flip-flop, or tri-state device. The device
records need not be in any particular order.

or m r e internal connector records, followed by zero or m r e external connector
records.
time.
device. The formats for the various types of devices is shown in A-25.
internal connector record describes a connection from the output of this device
to the input of another device in the network. An external connector record
describes a connection from the output of this device to an "external register"
which is pseudo in that it does not exist in the real target network, but is
used for implementation of functional emulations. The components of a device
record must be in the order stated above, and they must be contiguous.
connector records for a particular device may be in any order, and the pseudo
connector records may be in any order. The overall structure of the Hardware
Description Matrix is shown in Figure 7.

Each device record is made up of exactly one Header word, followed by one

The Header word fully describes the state of the device at any given
The format for a particular Header Word varies depending on the type of

An

The

-14-

Control Store

I DeviceRecordl

I DeviceRecord4

I Device Record i

I Device Record n

Internal Connector Record 1

- - - - -
I
I

I

I
I

I
I

-> - -

Internal Connector Record j

External Connector Record 2

>> External Connector Record p
I - - - - -

(Layout for target with a total of n devices, device i has m internal

Hardware Description Layout

connections and p external connections)

Figure 7

4.3.4 Stacks

The emulator gate-level technique is event driven; that is, during each
time period a given device will be processed only if a specific event has
occurred during the previous time period, namely that device's output value has
changed.
period need not be examined since it cannot affect any other devices.
method used to efficiently implement this event-driven capability is the
maintenance of two stacks.
"c" stack, and the other is referred to as the ''char" stack.
time period, the list of devices which changed during the previous period is
known as the c stack.
source device, off the c stack and processes it. For each source device, it
examines each destination device into which this device feeds, as it is a
possible candidate for a change in output value this time period. If the
destination device does not have a change in output value, the emulator
proceeds to examine the next device into which the source device feeds.
output value of the destination device does change, it is added to the list on

Any device whose output value did not change during the previous
The

At any given time, one stack is identified as the
During each

The emulator takes one device at a time, namely the

If the

-1 5-

the cbar stack.
cbar stack contains a list of all devices whose output values have changed
during this time period. A device placed on the cbar stack may have changed
output value an even or odd number of times during this time period.
changed an even number of times, it is not processed during the next time
period. As part of the initialization for the next time period, the time is
incremented by one, the cbar stack now becomes the c stack, and the previous c
stack becomes the new cbar stack, and is cleared, to be built up again during
the new time period. Thus it can be seen that the program is always reading
the c stack and writing the cbar stack, and also that the identity of the two
stacks reverses itself each time period. It has been observed that for any
given time period, only a very small percentage of the devices in a network
need be examined.

At the start of each emulation run, stack c must contain the device
identifiers for all devices whose output values changed during the previous
time period, namely t = O .
stack cbar contains the device identifiers for all devices whose output values
changed during this first period.
period. The identifiers on the stack are not in any particular order.
program maintains a pointer to the base and top of each stack.
grows upward to a higher control store location, i.e., as a device is added to
the stack, it is pushed onto the top of the stack and the top of stack pointer
is incremented. As each device is processed, it is popped off the top of the
stack, and the top of stack pointer is decremented. A t the beginning of each
run, stack c must contain at least one device identifier, and stack cbar
contains no identifiers.
beginning at control store location x and containing n devices:

Thus it can be seen that at the end of this time period, the

If it

At the end of processing for the first time period,

The stacks are then reversed after each time
The

Each stack

Figure 8 shows the general structure of a stack

control store address contents

X
x+l

x+n-1

device identifier <- Base of stack
device identifier

11

I1

n

device identifier

S t a c k

<- Top of stack

Figure 8

4.3.5 Events

Events which are emulated at the functional level must be scheduled
because they do not necessarily occur each time period.
scheduling of events, two singly-linked lists are used, namely the event list
and the free space list. Both lists are maintained in the control store of
the Qm-1. A pointer to the head of each list is also maintained in control
store. Each element in the event list is a record consisting of three words.
The first word contains the time at which the event is to be executed or

To implement this

-16-

emulated.
list which is to be executed at some time greater than the time for this event.
The links in the event list are maintained so that the list is always in
ascending time sequence.
pointer in the second word.
the first action in control store which is to be executed at this time. The
actions are also maintained in a singly-linked list, so that many different
actions may be executed at one specified time.
reverse order to that in which the actions were scheduled. The format for the
event list data structure is shown in A-2, and a diagram showing the event list
as it relates to the free space list and the action list is shown in A-1.
Scheduling of events and actions is shown in A-4 and A-5 respectively.

The second word contains a pointer to the next event in the event

The last event in the event list contains a null (0)
The third word in the event list is a pointer to

An action list is in the

4.3.6 Actions

Each unique functional subsystem is implemented through the use of an
"action". An action is composed of an action subprogram module, an action data
structure, and optionally other data structures required for the particular
action. In general, when the time period occurs for which the action has been
scheduled, the specified action subprogram is given control, and it "executes"
the action by making use of the corresponding action data structure(s).

each unique action be performed.
varies according to the type of action; however, each action record contains at
least three 18-bit words. The format of the first three words is the same for
all actions. The remaining words, if any, vary according the action.

At any particular time, an individual action is scheduled to be executed,
or not, as indicated by the "scheduled" switch in word 1 of the action. If it
is not scheduled, it is not linked into any of the action lists.
scheduled, the appropriate pointers link it into the action list for the event
scheduled for the time at which this action is to be executed.

emulator cannot be overemphasized. Associated with each action data structure
must be a subroutine module which is to be called when the time period is
reached for which the action has been scheduled.

user of the emulator. These actions are: write to memory, read from memory,
stop run, "do operations", do external inputs, and do external outputs. Each
of these actions is described in detail in Section 4.3.10. In addition to
these supplied actions, the fact that the user can write as many of his own
actions as desired is the feature which makes the emulator so flexible. The
implication is that any functional emulation which can be written in subprogram
form by the user can then be used in conjunction with the gate-level emulation.
Thus it is possible for an action written by a user at the functional level to
actually access and/or modify the state of the gate-level network.
be noted that there is not necessarily a one-for-one mapping between the action
data structures and the action subprograms.
action data structures associated with one subprogram.
one read action subprogram, but there must be one memory control block, one
emulated memory, and one action data structure for each ROM or RAM to be
emulated.
structure specifies the location of the memory to be read, the size of the
target word, the locations of the data and address registers, etc. In other
words, the subprogram is general for most reads, but the action data structure

There must be in the QM-1's control store memory one action record for
The number of words in each action record

If it is

The importance of the actions feature in the scheme of the diagnostic

To date, six different action subprograms are available to the general

It should

Typically, there may be many
For example, there is

The subprogram performs the actual read action but the action data

-17-

is specific to the memory.
use of the same read memry subprogram.
subprogram.

4.3.7 Master Action Control Register

It is usually possible for all the memories to make
The same is true for the write memory

For each target emulation, one external register, namely the "action
control register" must be designated to control the triggering of any actions
associated with functional subsystem emulation. The high-order bit of this
register is the master action control bit for all actions. Each device which
controls the triggering of an action should have an external connection into
the high-order bit of the action control register, in addition to having an
external connection into some control bit in the action control block. For
each time period, the emulator checks the high-order bit of the master action
control register. If it is on, the emulator knows there is at least one action
to be scheduled, and proceeds to check all the bits in control bit words of the
action control block.
appropriate action is scheduled. On the other hand, if the high-order bit of
the master action control register is off, the emulator knows that no actions
are to be scheduled and need not check the individual control bit words of the
action control block.

For each bit in the control bit word which is on, the

4.3.8 Action Control Block

For all functional subsystems (actions), a set of action control blocks is
allocated in the control store of the QM-1.
more action control records. There is one action control record for every
eighteen action control lines. An action control record consists of one word,
referred to as the "Control Bits" word, to represent the values of the eighteen
control signals (this word is actually a "pseudo" register which is fed by
appropriate devices in the netlist), and two additional words for each control
line. The last action control record may not actually represent a full
eighteen control lines, but the full amount of storage (37 words) is allocated
in any case. The data structure for an action control block is illustrated in
A-3.
action control lines for which actions can be scheduled have been accounted
for.

it proceeds to check each bit in the "control bits" word. When it finds a bit
that is on, it accesses the appropriate two words in the action control record
for the address of the corresponding action and the appropriate delta time.
then schedules the action whose address it has accessed to be executed at a
time equal to the current time plus the delta time it has accessed.

Each block will contain one or

Note that words 1 through 37 will be repeated contiguously until all

When the emulator has determined that the master action control bit is on,

It

4.3.9 Emulated Memories

A contiguous block of main store in the QM-1 is allocated for each ROM or
RAM to be functionally emulated. Each QM-1 main store word contains eighteen
bits. The number of QM-1 words necessary to represent one target memory word
depends completely on the number of bits in the target word. If the target
word has 18 or less bits, then only one QM-1 word is needed for each target
word. In any case the target bits are stored in the QM-1 with the highest
order target bits stored in the high order bits of the lowest QM-1 address
used. The target word may be stored in the QM-1 either right or left

-18-

justified, as determined by the user.
memories to be contiguous to each other in the QM-1, but within one memory, all
QM-1 words are contiguous.
and A-34 for the Emulated Memory Layout.

It is not necessary for two or more

See A-33 for a layout of the memory data structure

4.3.10 Action Descriptions

Following are descriptions of the actions which have been implemented to date:

4.3.10.1 Write Memory Action

The write action is used to write a word from a data register to a target
See A-36 for the Write Memory Action Data Structure

The action is scheduled at a time equal to the current time plus

word in ROM or RAM.
Layout.
low to high.
the delta time in the second word of the write action data structure.

When the current time reaches the scheduled time, the write action is
executed. The emulator reads the emulated address register and shifts the bits
the appropriate amount to right-justify the target address.
this address against the low and high valid target addresses in the seventh and
eighth words of the action data structure.
valid range, a message is outputted, and the program aborts. If the address is
valid, the actual QM-1 address for the target word is calculated as:

The action is scheduled when the controlling device transitions from

Next it checks

If the address is not within this

QM-1 address = relocation constant +

(The number of QM-1 words per target word is obtained from the first word of
the action data structure, and the relocation constant is obtained from the
fourth word of the action data structure). The program then reads the data
register as pointed to by the sixth word of the write action data structure.
It then stores the data from the data register into the QM-1 address as
calculated above.
the one target word.

target address * number of QM-1 words per target word

This procedure is repeated for all QM-1 words representing
Figure 9 is a diagram of a write memory action structure.

-19-

Device A Device C
I I
I
I Device B I Device I
4

I I (external connections)
4 4

I
4

I Address Register
- - - 1 i (address used by

I I write action)

t t t
I (data written to memory
I from data register by write action)

I I
I I
I I I

I Data Register I
t t t
I I I ($xternalcarnsctions)
I I I

Device X I Device Z
Device Y

Write Memory Action Structure

Figure 9

-20-

4.3.10.2 Read Memory Action

The read action is used to read a word from a target ROM or RAM. See A-37
for the Read Action Data Structure Layout. The action is scheduled when the
controlling device transitions from low to high. The action is scheduled at a
time equal to the current time plus the delta time in the second word of the
read action data structure.

When the current time reaches the scheduled time, the read action is
executed. The emulator reads the emulated address register and shifts the bits
the appropriate amount to right-justify the target address.
this address against the low and high valid target addresses in the seventh and
eighth words of the action data structure.
valid range, a message is outputted, and the program aborts. If the address is
valid, the actual QM-1 address for the target word is calculated as:

Next it checks

If the address is not within this

QM-1 address = relocation constant +
target address * number of QM-1 words per target word

(The number of QM-1 words per target word is obtained from the first word of
the action data structure, and the relocation constant is obtained from the
fourth word). The program then reads the appropriate QM-1 address to get the
new data. It then compares this new data, bit by bit, with the old data in the
data register pointed to by word six of the action data structure.
case, if the bit in the target word just read agrees with the bit in the data
register, no action need be taken; however, if the bits are different, then the
device in the network (as specified in the appropriate word in the action data
structure) to which this bit feeds is enqueued on the stack. This procedure is
repeated for each bit in this word, and then the entire procedure is repeated
for all QM-1 words representing the one target word.
register is then updated to represent the data just read from the target
memory.
which the bits in the data register feed must be simple gates.
diagram of the read memory action structure:

In each

Each word of the data

It should be noted that for a read memory action, the devices into
Figure 10 is a

-21-

Device A Device C
I I
I
I Device B I Device I

4
I I (externdl caplectiars)
4 4

I
4

Address Register

(address used by
- - - I

I read action)

I r1< -----

I
I (data sent from memory to
I data register and devices
4 by read action)

I I
I I

I I
J. J.

I Data Register I
I I I

I I I
4 I

Device X 4 Device Z
4

Device Y

Read Memory Action Structure

Figure 10

-22-

4.3.10.3 Operations Action

time, when and how certain functionally emulated "operations" are to be
performed. See A-39 for the action data structure used for the operations
action. Each valid operation has been assigned a particular operation code.
To date, the valid operations codes are:

The "Operations Action" was created to allow the user to control, at run

Code Operation

2 stop run
3 stick gate at 0
4 stick gate at 1
5 lift gate fault
6 insert fault in ROM
7 lift fault from ROM

For each batch job, these operations are specified by the user in the Fault
File. See Section 5.4.2.2.3 for a detailed discussion of the fault file. The
"operations action" is the method used for implementing these valid operations
at the properly scheduled times. At run
time, the fault file for the entire batch is read and converted to the "fault
buffer" which is stored in the main store of the QM-1.
fault file, the user has specified a time at which it is to be scheduled, and
possibly other parameters, depending on the particular op code.
store of the QM-1, are maintained two pointers. The first(p1) points to the
first word of the fault buffer and remains unchanged for the duration of the
batch execution.
fault list to be scheduled. For each run in the batch, the operations must be
entered in the fault list in ascending time sequence. During initialization
for each run, the emulator schedules the first operation for that run. When
the emulator reaches the time period at which at least one operation has been
scheduled, it executes all actions which have been scheduled for that time.
then adjusts pointer p2 appropriately and schedules the next operation. Since
each run must have a "stop run" as its last operation, this is the manner in
which multiple runs are carried out for each batch. Figure 11 shows the fault
buffer format.

The implementation works as follows:

For each op code in the

In the control

The second pointer(p2) always points to the next entry in the

It

-2 3-

Pl >

p2L>
Fault Buffer Layout

op code

time

.

,

Figure 11

Following are descriptions of the op codes which have been implemented to date.

4.3.10.3.1 Stop Run

program to terminate processing for that M. When a "stop run" is executed, a switch is turned on which causes the main

4.3.10.3.2 Stick Gate at 0/1

dumny gate must be added by the user as the last gate in the network.
Section 5.2.3. When any gate, say gate X, is faulted, the program dynamically
creates a temporary connection frcnn the output of the dunmy gate to the enable
input of gate X, sets this line to "disabled", and simultaneously sets VDIS
(see A-29) in the connector word to the value at which the gate is to be stuck.
This causes the gate to be disabled, and its output equal to WIS, in essence
causing the gate to be stuck at the desired value, until a "lift gate fault"
operation is scheduled for that gate.

For the purposes of sticking and lifting stuck-at faults fruin gates, a
See

4.3.10.3.3 Lift Gate Fault

the dunmy device and device X when the gate was faulted, is removed, and the
gate is thus enabled and its output will again reflect its inputs.

In order to lift a gate fault, the connection that was established between

4.3.10.3.4 Insert Fault in ROM

to be faulted.
The user specifies the number of the IUX, the address and the bit position

The emulator merely conrplements the bit which is to be faulted.

-24-

4.3.10.3.5 Lift Fault from ROM
Again the user specifies the number of the ROM, the address and the bit

position from which the fault is to be lifted.
the bit, thus returning it to its correct value.

The emulator merely complements

4.3.10.3.6 Stop Batch
This operation is unique in that it may not be specified by the user. The

program automatically adds a "stop batch" code at the end of the fault buffer.
When it is executed, a switch is set which causes the main program to terminate
execution of the entire batch.

4.3.10.4 External Inputs Action

The emulator contains a feature which allows the user to request that
inputs generated externally from the emulation be inserted into network devices
internal to the emulation, at specified times. This feature is implemented
with the external inputs action. For a given batch, a user may specify any
number of external input sets, or he may request none. Each set corresponds to
a particular set of devices in the network. Each set consists of a set of
contiguous input data bits coming from an external source to be inserted into
the set of specified devices in the internal logic network. The user decides
how he wishes each set to be composed, i.e., for each external input set, he
decides into which group of devices in the network and in which order the
external inputs are to be fed.
signals should be inserted.
separate external input file must be generated by the user before the emulation
begins. Each item consists
of a time at which the data is to be inserted into the devices and the data (a
contiguous set of 1's and 0's) which is to be inserted at the given time into
the given devices. For a given batch, the same external input data is used for
each run.

and creates in the QM-1 main store a contiguous list of the data from these
files, where this list consists of a sublist for each external input set.
These sublists are re-used for each run, so that, for a given batch, the same
external inputs are used for each run in the batch. The program also creates
an external input action for each one of these sets. A pointer to this main
store list is put into the appropriate action. The program also sets up a
contiguous set of address and data registers for each external input set.
the purposes of setting up these structures, the user supplies to the
initializer the address of the control store location for the first external
inputs action data structure, the control store address for the first data
register and the control store address for the first address register
associated with the external inputs action.

The external inputs action is implemented in a manner similar to the read
action, except that it is not triggered by a control line, but rather by the
current time reaching the time specified in the external inputs file. Also,
the external inputs action automatically increments the appropriate address
register to point to the next data item and also schedules the next external
inputs action for this set.

He also specifies at what times these input
For each external input set that is specified, a

This file contains a list of external input items.

During batch initialization, the program reads the external input files

For

The action data structure as well as the data
registers and address registers needed are created by
basically transparent to the user, with the exception
where in the memory of the QM-1 these data structures
first external inputs action for each external inputs

the program, and are
that he must specify
will be placed. The
set is scheduled at the

-25-

beginning of each run, and then inmediately after any external input action is
executed, the next one in time sequence'for that run is scheduled.

For each set, the user supplies the name of the associated external inputs
file, the number of bits in the data, and the names of the devices to which the
data feeds.
states, i.e., for a regular gate there must be no input to the gate other than
this external one, and for a tri-state, there must be no input other than the
enable/disable line.
action.

These devices must be single input gates or single-input tri-

Figure 12 shows the structure for the external inputs

-26-

Hain
Store

< I
external
inputs
l ist
for

set 1

ex t e rnal
inputs
list
for

set 2

5xternal
inputs
list
for

set n

Control
Store

Control
Store

action data
structure
for set 1

action data
structure
for set 2

action data
structure
for set n

address register

address register

for set 1

for set 2

address register
for set n

data register
for set 1

>

>

data register
for set 2

data register
for set n

External Inputs Action Structure

Figure 12

-27-

4.3.10.5 External Outputs Action

The emulator contains a feature which allows the user to request that the
output signals from specified devices in the network be recorded or "externally
outputted" at specified times, and in specified groupings.
implemented with the external outputs action.
request any number of external output sets, or he may request none. Each set
corresponds to the output signals from a specified set of devices in the
netlist. For each external output set that is requested, a separate external
output file will be written at the completion of the batch. The user decides
how he wishes each set to be composed, i.e., for each external output set, he
sets up a group of external data register[s] into whose bits he feeds the
signals he wishes to output in whatever order he wishes them to be arranged.
He also specifies at what time periods these output signals should be captured.
They can either be captured automatically at regular time intervals, or the
capturing of data can be triggered by logic internal to the network. Thus when
the batch is completed, each external output file will contain one record or
entry for each time the external output action was triggered. Within this
record will be the time at which the data was captured and the data itself. As
an example, if the target hardware contains an accumulator whose contents the
users wishes to track, he would feed the devices representing the bits of the
accumulator into external registeris] and would use these external registerts]
to create an external output file.
would see at specified times the contents of the accumulator. Note: for one
external output set, all the bits in the external registers to be outputted
must be contiguous and can occupy more than one QM-1 word; however the bits for
one external output set (the data registeris]) do not need to be contiguous
with the bits for a different external output set.

batch initialization, the program reads all the data necessary to create an
external outputs action for each external output set. The emulator sets up the
necessary action data structure for each external output set requested. The
appropriate pointers are put into the appropriate action. The program also sets
up a contiguous set of address registers, one for each external outputs set.
The program automatically maintains the address registers, but it is the user's
responsibility to maintain the data register for each external output set. The
initializer reads the control store location for the first external outputs
action, and the control store address for the first address register. For each
set, the emulator reads the number of bits in the data, the name of the output
file to be produced, the maximum number of data items in the buffer, the
control address of the associated data register, the reschedule flag, the start
time and the delta time.
control bit or by automatic rescheduling, depending on how the reschedule flag
is set.
logic using a control line(hand1ing this in the same manner as a memry
action). If the reschedule flag is 1, the program automatically schedules the
action beginning at the designated start time, and automatically reschedules it
from the start time to the end of the run in increments of delta t. Each time
an external output is triggered for that set, either at regular time intervals
or by the internal logic, the external output action is executed which saves
the requested data in the QM-1 main store buffer. At the end of the batch, the
entire memory buffer is written to disk file(s). Figure 13 shows a diagram of
the external outputs action structure.

This feature is
For a given batch, a user may

By reading this external output file, he

The implementation for an external output set is done as follows: During

The external output generated can be triggered by a

If the reschedule flag is 0, the scheduling is done by the internal

-28-

Action for eo set 1

Action for eo set 2

Action for eo set n

Control
Store

Address
Registers

>

t 1 >

>

I '

I Control
Store

Regi s te r s

I

Main Store
External Output

Buffer

tl 1

t 1 2

data, I

data,

t 2 1

t 2 2

data,

data22

Control
Store
Address

Registers :1'
run 1-

run 2

run m -

eo set 1

run 2
run

run

Note: eo = external output; assume n external output sets and m runs i n batch

External Outputs Action Structure
Figure 13

External Output Control Store Action Data Structures

-29-

4.4 Algorithms

4.4.1 Initialization Algorithm

In the netlist, the user must specify the initial output value for
anywhere from one to all devices.
device, a record is kept of all input lines and the values on those input
lines, as well as any initial user-defined output value for the device.
addition, a separate list is kept of all devices for which all input lines to
that device have defined values. This list is then processed one device at a
time. For each device whose input lines are all defined, its output value is
calculated. If the predefined output value, if any, does not agree with the
calculated value, then the user is notified, and the calculated value is used.
In the case of a flip-flop, if the preset line is active, the output is set to
one, whereas if the clear line is active, the output is set to zero.
neither preset nor clear is active, the output is set to the user's predefined
output value if any is present.
and the input lines to all devices to which it fans out are set accordingly.
As these input lines are being set, the destination device is examined to see
if after this input line is set, whether all of its inputs are then defined.
If not, the program proceeds to the next destination device. If so, the
program calculates an output value consistent with the input values, and then
this destination device is added to the list of defined devices.
Simultaneously, a check is made to see whether the predefined value, if any,
agrees with the calculated value. If not, the user is notified, but the output
value is set to the calculated value. This procedure continues for each device
on the "defined" list, and hopefully the "defined" list grows as the procedure
continues.
list, the initialization procedure has been completed.
devices have defined output values, the initialization is considered
successful; however, if not all the devices are on the "defined" list, the user
is notified.
better idea to correct the netlist and do the initialization again before
attempting an emulation.

The algorithm works as follows: For each

In

If

Next, the fanout from this device is examined,

After the program has processed the last device on the "defined"
If at this time, all

He may choose to proceed with the emulation, but it would be a

4.4.2 Functional Emulation Algorithm

The functional algorithm schedules actions, executes actions at the times for
which they have been scheduled, and implements the faulting of gates and
memories. One iteration of the functional algorithm proceeds as follows:

Actions are scheduled as follows:
If the master action control switch is not on, no actions are to be
scheduled. If the master action control switch is on, then each action
control record is examined in turn. For each bit in an action control
record which is on, the appropriate action (whose address is found in the
corresponding word in the action control buffer) is scheduled.

The first event in the event list is examined. If its time is less than
or equal to the current time, then all the actions to which it is linked,
are executed, and that event is removed from the event list. If the time
of the first event is greater than the current time, no actions are
executed (because events are linked in order by ascending time).

Actions are then executed as follows:

-30-

Faulting of gates is carried out:
If there are any gates to be faulted or from which faults are to be lifted
during this time period, the "faulter" gate is enqueued with connections
to all gates which are to be faulted or from which faults are to be
lifted. This enqueueing/dequeueing of the "faulter" gate insures that the
fault will be inserted/lifted in the next time step.

4.4.3 Gate-level Algorithm

The gate-level algorithm examines only those devices whose output values
changed during the previous period, and using this information, calculates
which devices change output value during the current time period. Initially,
there must be at least one device on the c stack. A device on the stack is one
whose output has changed during the previous time period.
consists of processing each device on the c stack and simultaneously building
the cbar stack.

One iteration

Processing of one device from the c stack proceeds as follows:

The device is removed from the top of the stack. It is then checked to
see whether its output value has changed an even or odd number of times
during the previous period.
times, then this device need not be processed at all. If, however, it
changed an odd number of times, then processing continues. Processing of
a given source device from the stack consists of processing all internal
connections from this device and then processing all external connections
from this device.

If the output value changed an even number of

The Internal Connections are processed as follows:
Each device into which this device feeds (destination device) is
examined.
on the type of internal connection:

The processing algorithm for the destination device depends

If Connection is to a gate or tri-state(but not the enable input):
The count (see Section 4.4.3.1) of the destination header is
appropriately updated. Next the current count and the initial count
(before the updating took place), are examined. If neither is zero,
then no more processing of this destination device is necessary;
however, if either one is zero, then this destination device must be
processed further. First the internal value is complemented. Next
a check is made to see whether the gate is enabled.
further processing is needed.
proceeds: the internal value is copied to the external value. Next
a check is made to see whether this destination device is already on
the cbar stack (as a result of its output value having changed
because of a different source device which was already processed
from the c stack). If it is on the stack, then all that is done is
to update its header item which indicates whether it has changed an
even or odd number of times.
stack, then it is enqueued on that stack.

If not, no
If the gate is enabled, processing

If it is not already on the cbar

If Connection is to a flip-flop or to the enable line of a tri-state:
The processing carried out depends on the type of connection.
the case of a flip-flop, first the particular input in the header is

In

-31-

complenrented, whether it be P, C, T, L, J, K, or D (J and K). The
rest of the processing is particular to the type of connection.
Again, the destination device is examined to see whether or not it
should be enqueued on the cbar stack.

The External Connections are processed as follows:

The new output value from the source device is copied into all bits in
external registers into which this device feeds.
that any ti= the high order bit in the master action control register
is turned on (it is in an external register and is turned on if any
device feeding it goes high), then the next tinre the functional
algorithm is executed, some action(s) will be scheduled.
actions scheduled will be those corresponding to the one bits in the
action control register(s1.

It should be noted

The particular

Once this item from the c stack has been processed, the processing of the
next source device from the c stack proceeds.
c stack is empty and the cbar stack represents the new stack.
one iteration of the gate-level algorithm.

This looping continues until the
This consists of

4.4.3.1 Description of Device "Count"

the header record.
(without explicitly calculating the output value as a function of the input
values) when the output value of a simple gate has changed. The "count" for
each device is initialized as shown in Figure 14.

For each regular gate and tri-state device, a count is maintained within
The purpose of this count is to enable the program to know

-32-

: . .

Type of Gate

AND

NAND

OR

NOR

NOT

XOR

Initial Value
of "count"

No -M

No -M

NO

NO

0

No -n

No -n I I M O R

M = total number of input lines to this device
No = number of input lines that are high initially
n = number of input lines high which result in high

output(XOR,NXOR only)

" Count " I n it i al izat i on

Figure 14

Each gate is restricted to not more than 3l(decimal) inputs.
Once the emulation has begun, the count is maintained as follows:

Each time an input line transitions from zero to one, the count is incremented
by one.
decremented by one.
output value of the device is complemented.

Each time an input line transitions from one to zero, the count is
Any time the count transitions into or out of zero, the

-33-

5. User's Guide
5.1 Installation of Programs

5.1.1 Installation of Emulator on Vax (Using Vax/VMS):

Note:
done on the e l , because the initialization and file transfers must be done
from the Vax.

This installation is necessary even if all production runs will be

Notation used:

user represents the name of the user8s root directory (without the
brackets). For example, if the user8s root directory is [Smith],
then in this document, user represents Smith.

underlined items are those which the user types.

Installation Steps:

A tape has been created using the vtas Utility Backup.
"bbemul" and Save Set Name "diagem.bck". This tape contains the following
hierarchy of directories:

This tape has ID

[bb.dem]

1. [bb.dem.emulator]

2. [bb.dem.runl
3. [bb.dem.transfers]

[bb.dem.transfers.qmlvaxl

[bb.dem.transfers.vaxqml]

4. [bb.dem.templates]

5. [bb.dem.targets]
[bb.dem.targets.counter]

[bb.dem.targets.toy]

[bb.dem.targets.test]
[bb.dem.targets.col

source programs and colrmand files for
conpiling and linking emulator

conmand files for running emulator

programs and connnand files for
transfers from QM-1 to Vax
programs and command files for
transfers from Vax to QM-1

Templates for data files

all data files for 3-bit counter
circuit
all data files for toy computer
circuit
all data files for RTI test circuit
all data files for RTI conmumicator
interstage circuit

In all cases it is necessary to restore 1. and 2.
transfers, one must restore 3.
restore 4 , and if one wishes to use sample target circuits, one must restore
any or all of the subdirectories of 5.

If one wishes to do
If one wishes to use templates, one must

-34-

Assume the tape has been physically mounted on msaO:
Use the following comaands to restore all directories and subdirectories
from the tape:

$Mount/foreign msaO:

$BackuD/verifv msaO:diauem.bck/save/select=fbb.dem. ..l -
I user. dem. .-. 1 (restore ‘from tade

$set default [user.dem.emulatorl

$@compandlinkemu (compile and link programs)

-le of Installation:

Assumptions: Name of user root directory is (Smith]

$Backup/verify msa0:diagem .bck/save/select=[bb.dem...]
7: smith.dem.. .]

(Restore Droarams from taw)
- 4

$set default [smith.dem.emulator]
$@compand1 inkemu (Compile and link programs)

TO &&e Modifications to Existing Programs

To make changes to existing initialization Program:

$set default [user.dem.emulator]
Edit appropriate Fortran module(s1 in tu~er.dern.emulator1
DO Fortian- compiles of appropriate module(SI
$@initlink (links initialization programs)

To add new module(s) to existing initialization Program:

$set default [user.dem.emulator]
Create new F o r t ~ s e r . d e m . e m u l a t o r] and compile
Add new module name(s) to i n i t ~ o ~ d e m . e m u l a t o r]
$@initlink (links initialization progr%EJ-

To make changes to existing emulation Program:

$set default [user.dem.emulator]
Edit appropriate Fortran module(s1 in [u~er.dem.emulatorl
DO Fortran compiles of appropriate module(s)
$@emu11 ink (links emulation programs)

-35-

To add new module(s) to existing emulation Program:

$set default [user.dem.emulator]
Create new Fortran nnodul es in [u~er.dem.ewrlator] and compile
Acw new module name(s) to e w r l ~ d e m . e m u l a t o r J
$@emu11 ink (links emulation programs)

5.1.2 Installation of Emulator on QM-1

Note:
done on the Vax.
knowledge of the Nova and Easy Operating Systems on the -1.

This installation is not necessary if all production runs are to be
In order to proceed, one needs at the mininnnn a working

Notation Used:

Underlined characters are those which the user types into the QM-1
Operating System.

<CR> represents Carriage Return.
<ESC> represents "escape"
<Z> represents "control" key and Z key pressed simultaneously

The Diagnostic mlation System Tape was created in Airlab at Langley
Research Center using the DISK-SAVE function of the EASY operating system.
The tape contains users 6 and 8 in that order.
diagnostic emulation programs, and user 8 contains the Vax-to-QM1 and the
QMl-to-Vax transfer programs. Note that the tape files can be restored to
users other than 6/8 by specifying the desired users in the USER-
FORMAT,USEFt= comnand and in the DIRECTORY SEARCH cnmnand.

User 6 contains the

5.1.2.1 Restore Emulation System From Tape to Disk:
Mount User Disk (it is assumed for this document that the disk is m t e d
on drive 0, but it could be mounted on any drive)

Mount Elnulation System Tape (it is assumed for this document that the tape
is mounted on drive 0, but it could be mounted on any drive)

Press Master Clear, Start

???ll)l[rAsy

SET W4TE AND TIME

-

-36-

MOQNT TAPE ON'DESIRED WIT

(ANY -1
HIT ANY KEY To CON"., ESCAPE T" 'ESC' KEY

sv-RES HEADER
DATE=-
TIMEiYY: YY: W
USER MODE
ALL OF USER 6

To ACTIVATE HIT RETURN
<Qu
HIT RETURN To UNLOAD
<E>

(user 6 has now been restored from tape to disk)

! ! USER-FORMAT, USERz8

HIT ANY KEY To CONT., ESCAPE T" 'ESC' KEY
(ANY KEY)

TAPE ON DESI- W I T

SV-RES HERDER
DATE=XX/XC/XX
TIME..YY:W:W
USER MODE
ALL OF USER 8

To ACTIVATE HIT
<Qu

RETURN
-
HIT RETURN To UNLOAD

(user 8 has now been restored from tape to disk)

5.1.2.2 Compile & Link Easy Programs: Vax<-->QM-l Transfers

!!DIRectory,Search lst=06,2nd=,08
!!EXEC BBMl (compile Easy programs)
! !KIM).- (link Easy programs) -

-37-

5.1.2.3 Generation of program to write External Outputs to Disk

! !SI- Sn WOlDI!X:S WX?DISK:B $

5.1.2.4 Generation of Microcode Driver

-38-

PRESS Master Clear, Start
???LDNw
l l f i i w 6
!Ex /BBEmHPILE

5.1.2.5 Generation of Nanocode Emulator
PRESS Master Clear, Start
???LDMN
!USER,
!rnIuASPc
! .*l
!a2 IIWT=/EEiHWlVl:S BIN=/BBBNE$IN
!N~INPTP~EMPI~~:S B I N = ~ E M P ~ ~
!sINP‘k/B5EMP2Vl:S BIN=/BBHWM
!N~INPT=~EHPM:S BIN=WEHPN~
!sINPT=-:S B 1 ” S W W) : B
!KP I N P P ~ E M P ~ V L BIN=^
! ~ I I W T = / B B E H P 2 V l BI-
! ~ I N P W / B B E H P M BIN=-3
!~INpT..FIsMuyD:B - B I N = - m : R

-

-39-

5.2 Data Preparation

5.2.1 Suggested QM-1 Template

user is to manually lay out the QM-1 memory to accomodate the various data
structures.
done on the Vax or part on the Vax and part on the QM-1. The reason for this
is that when the Vax emulator was written,it was assumed that the "production"
runs would always be done on the QM-1 and that only "debugging" runs wwld be
done on the Vax.
were to be run on the QM-1.

buffer, the external input list, and the external output buffer.
data structures, including the netlist and external registers,
control store.
accomodate most emulations, is shown in Figure 15 (note that control store
locations 0 through 1777 cannot be used by the user.

In preparing to emulate a system, one of the preliminary steps for the

This step must be done whether or not the entire emulation will be

Thus the Vax initializer always sets up the data as if it

All other
are stored in

The main store of the QM-1 must be used for the target memories, the fault

A suggested layout for the QP-1 memories, which should

CONTROL STORE

location
(octal)-

con tents

reserved for nanocode implementation
i
I
I

1777 I

free space and events(3 words per event)
=I

I
I

2377 I

2720
2722

ZTZS-

3777

memory actions (reads,writes)

stop action(3 words)

Stop action(3+n words where n=no. of memories)

Externals
i
I

-40-

4000
4001

4427
4430
4431

4i74
4475
4476

4541

4777

5177

52166
5277

5477

E O T
57 37

5t40

7277

time

master action control register
action control bits
pointers to actions

more action control bits
pointers to actions

external output address registers(1 word each)

external inputs address registers(1 word eachr

external inputs data registers(size of each is
determined by no. bits
given in *eopts.dat)

external outputs actions (8 words each)

--
external inputs actions(each action is 10+n words
where n is the no. of bits
given in *eopts.dat)

netlist in binary form
(hardware description matrix)

-41-

MAIN STORE

location
'7izm-r

contents

target memories

7777 1
I
I

10000 I
I externals (if any)

10777 I

iiooo i

I
I
I
I
I
I
I
I

I fault buffer
I (The total size is determined by the fault list)

data used no. words code function --
2 z s t o p run: op,t

3 3 stick gate 0 op,t,gate no.
3 4 stick gate 1 op,t,gate no.
3 5 l i f t gate fault op,t,gate no.
5
5

6 insert fault in rom op,t,mem id,trJord ,&bit A
7 lift fault from ram op,t,mem id,wrd id,bit id

external inputs list
(there is one ei list for each ei set.
the size of each list is n*(m+l) where
n is the no. of times an external input is inserted
m is the no. of 18-bit words required to hold

(the external inputs list is stored automatically by the program
at the next 100, word boundary following the fault buffer)

the no. of specified bits for this set)

external output buffer
(there is one buffer for each eo set
the size of each buffer is n*(m+l) where
n is the no. of times an external output is written
m is the no. of 18-bits words required to hold

i
I
I
I
I
I
I
I
I

the no. of specified bits for this set)
(the external outputs buffer is stored automatically by the
program at the next 100, word boundary following the
external inputs list)

QM-1 Memory Template

Figure 15

-42-

5.2.2 Setup of Functional Memories

In most cases, target memories will be implemented at a functional level.

There are
Outlined below are the steps the user must take to set up for this functional
emulation. These memories may be any combination of RaMs and RAMS.
two types of actions associated with memories, namely read memory and write
memory. Each ROM should have at least one read associated with it, and each
ram should have at least one read and one write action associated with it. In
order to implement a given memory, it is the user's responsibility to do the
following (see Section 5.4.1.2):

1.

2.

3.

4.

5.

6.

In the netlist, there must be a single device of any kind whose output
line controls when the readhrite takes place. The appropriate action
takes place only when this line transitions from low to high.
output of this device must feed the master bit in the master action
control register, and it must also feed to a unique bit in a "control
bit" word in the action control block.

The

The address of the action to be performed when the control line goes
high, together with a delta time to be added to the current time for
scheduling, must be placed in the appropriate words of the action
control block, in the memories files.

For each read and write action, a separate data register(s) and an
address register must be set up as externals i n control store.
address register must be fed from the appropriate devices in the
network for both reads and writes. The data register for a read has no
explicit connections to it in the netlist. The identification numbers
of the devices to which the memory data will be fed when the read is
triggered must be designated within the read action.
write, the data register must have explicit connections from some
devices in the netlist.
have different data registers.
read and/or write action associated with it.
read and write layouts.

It is the user's choice as to whether the address in the 18-bit address
regis ter is to be right or left-justified.
by the bit positions in the address register into which the appropriate
devices feed.
choice. ItemW is the value by which the address in the address
register must be divided to right-justify it in the 18-bit word. For
example, if the user chooses to let the address be right-justified in
the address register, then W 4 ;
is represented by 6 bits, then W=2**12 or 4096.

The

In the case of a

A given memory may have more than one
For a RAM, the read and write actions must

See A-36 and A-37 for

This choice is determined

The value of item W in *iopts.dat depends on the user's

if the address is left-justified, and

The read and write action data structures must be provided by the user
in the *mems.dat file.

The address of the action control block must be given in item D5, the
address of the master action register must be given in item D7, and the
number of memory control records must be given in item D6 of
*iopts.dat.
bit words needed to hold all control bits for the entire emulation.

The number of memory control records is the number of 18-

-43-

7.

8.

9 .

The number of memories must be given in item V of *iopts.dat.

The initial contents of the target memories must be given in *ms.dat.
These memories are implemented in the main store of the -1, hence
these entries will begin with "M" in column 1.

The contents of each word of the target memory may use one or more @I-1
18-bit words, depending on the number of bits in each target word. For
a particular memory, let n represent the number of 18-bit words
necessary to hold one target word.
target word will be left-justified or right-justified over these n
words. When the read action(s) for this memory are generated, it
should be noted that word 9 of the action corresponds to bit 17 of the
first of the n QM-1-words, word 10 corresponds to bit 16, etc.. Thus,
if the memory contents are left-justified, word 9 contains the device
identifier of the device into which the most significant bit of the
data feeds, etc.; however, if the data is right-justified in the
memory, an appropriate amount of zeros wwld appear in words 9 ff. to
correspond to the leftmost data bits that are not used. In addition,
item D in word 1 of the reamrite action is affected by whether the
data is right or left justified(see the description of the r e a m i t e
action data structure).

If the number of memories is greater than zero, the relocation
constant(s) for the memories must be given in items Vl-Vn of
*iopts.dat.
contents of the memory will be offset from absolute location 0 in the
QM-1 main store.
determine at which QM-1 absolute location (for example, x) that each
EEOM or RAM will begin. Then he has a choice of two ways in which he
can present the initial data for the target memories, in the memories
file.
0, and in the memories file, he will specify that the first word of
memory begins in location x, etc. Using this method, if the actual
memory begins at target location 0, he must manually add x to every
location for this memory that he specifies in the memories file;
however, if he wishes the program to do the relocation, then he would
use the second method.
QM-1 location (say x) that the memory will begin; he gives x as the
relocation constant in items Vl-Vn of *iopts.dat, and in the mwaories
file, he gives the contents beginning in location 0, and the program
automatically adds x to each location.

The user may decide whether the

The relocation constant is the amount by which the

When the user lays out the QM-1 memory, he m s t

Using the first method, he will specify a relocation constant of

In this case he decides into which absolute

10. The data registers associated with read actions must be initialized in
the *mms.dat file to values consistent with the output values of the
devices to which the data register feeds.

-44-

5.2.3 Setup of Faults

If one wishes to fault gates, it is necessary to include two extra dunmy
A template for these is shown in Figure 16. gates at the end of each netlist.

It is also necessary to enter the name of the dummy faulting device (in this
case ZZZFAULTER) in *iopts.dat, item E. See Section 5.4.1.2.3.2. The names of
the two devices is arbitrary, but they must be the last devices in the netlist,

in the netlist must be in ascending order.
is on directory [bb.dem.templatesl. (see Section 5.1.1)

A file containing and the names
this template

> ZZZ FAULTER
ZZZFAULTER
ZZZ FAULTER
ZZZ FAULTER
ZZZFAULTER
ZZZ FAULTER
ZZZFAULTER
ZZZFAULTER
ZZZFAULTER
ZZZFAULTER
ZZZFAULTER
ZZZFAULTER
ZZ Z FAULTER
ZZZFAULTER
ZZZFAULTER ,
ZZZ FAULTER
ZZZ FAULTER
ZZZFAULTER
ZZZ FAULTER
ZZZ FAULTER
ZZZFAULTER
ZZZFAULTER
ZZZFAULTER
ZZZFAULTER
ZZZFAULTER
ZZZFAULTER
ZZZFAULTER
ZZZFAULTER
ZZZFAULTER
ZZZFAULTER
ZZZFAULTER
ZZZFAULTER
>zzzzDUMMY
ZZZZDUMMY
ZZZZMlMMY

template for the two standard faulting devices
allows for 30 gate faults per time step.(can be increased)
These two devices should be included at the end of the netlist.

1 CLASS=
10 zNAME=
10 ZNAME..
10 ZNAME..
10 zNAME=
10 ZNAME..
10 ZNAME..
10 zNAME=
10 zNAME=
10 zNAME=

' 10 ZNAME..
10 ZNAME..
10 zNAME=
10 zNAME=
10 zNAME=
10 zrwME=
10 zNAME=
10 zNAME=
10 zNAME=
10 ZNAME-
10 zIwa+
10 zNAME=
10 zNAME=
10 zNAME=
10 Z"m=
10 ZNAME..
10 ZNAME-
10 zNAME=
10 ZNAMEP
10 zNAME=
10 zNAME=
11 CSMSF=
1 CLASS=
10 ZNAME..
11 CSMSF=

1TYPE= 1vALuEp
ZZZZWMm
ZZZZDUMMY
ZZZZDUMMY
ZZZZDUMMY
Z Z Z Z D W
ZZZZDUMMY
ZZZZDUMMY
ZZZZDUMMY
ZZZZMlMMY
ZZZZDUMMY
ZZZZDUMMY
ZZZZDUMMY
ZZZZDUMMY
ZZZZDUMMY
ZZZZDUMMY
ZZZZDUMMY
ZZZZDUMMY
ZZZZDUMMY
ZZZZDUMMY
ZZZZWMm
ZZZZDUMMY
ZZZZWMMY
ZZZZDUMMY
ZZZZDUMMY
ZZZZDUMMY
ZZZZDUMMY
ZZZZDUMMY
ZZZZDUMMY
ZZZZDUMMY
ZZZZDUMMY

0 REGNO= 12 BITNOC
1TYPE= 1mm=

0 REGNO= 13 BITN(F
ZZZZDUMMY

1
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8

8
8
8
8
8
8
8

1
0

a

Sample Template for Faulting Device

Figure 16

-4 5-

5.2.4 Setup of External Inputs

The user may create zero or more sets of external inputs for a given
emulation batch.
It should be noted that the same external input files will be reused for each
run in the batch.

See Section 4.3.10.4 for a description of external inputs.

It is the user's responsibility to:

1. Set items in *iopts.dat (see Section 5.4.1.2.3):
Set items X, Z, and AA to appropriate values.

2. Set items in *eopts.dat (see Section 5.4.2.2.2):
Set item AA, which is the total number of external input files.
Set items AA1, AA2, and AA3 for each external input set.
AA is zero, then items AAl, AA2, and AA3 are omitted. For each
external input set, the user must create an External Input File.
He can use any valid VMS file name for this file. Each external
input file must have a unique name.
specified in item AAl. ItemAA2 specifies the number of bits to
be supplied to the netlist from this set.
devices into which the bits feed.
sets can be listed in any order.
devices must be listed in the order corresponding to the data
bits, where the first device listed corresponds to the most
significant data bit.

Create External Input Files (see Section 5.4.2.2.4 for details):
This step is omitted if item AA in *eopts.dat is zero.

If item

This user-chosen name is

Item- lists the
Note that the external input

For each external input set, the

3 .

5.2.5 Setup for Producing External Outputs

For a given batch, there may be zero or more external output files
created.
file will be written for each external output set at the completion of each
batch.

See Section 4.3.10.5 for a discussion of external outputs. An output

If the user has specified that the number of external output sets is one or
more, then it is his responsibility to do the following:

1. In *iopts.dat, set items BB, and DD.
2. In *eopts.dat, set item BB.
3. In *eopts.dat, if BB is at least one, then set items BE1 through BB5.
4. In the netlist, create external register(s) to act as the external

output data registers.
these registers.
For any external output set for which automaatic rescheduling is not
used:

The appropriate logic devices must feed into

5.

In the netlist the appropriate device must be fed into the master
action control bit and into a bit in some "control bits" word (see
Sections 4.3.7 and 4.3.8). This device is the one whose transition

-46-

from low to high will trigger the scheduling of the external output
action.

Set the address of the external outputs action(s) together with a
delta time to be added to the current time for rescheduling in the
appropriate words of the action control block in the memories file.
It should be noted in determining the action addresses that the
first external outputs action is stored at the address specified by
the user in item BB of *iopts.dat, and that each external outputs
action following the first is displaced from the previous one by
lO(octa1).

5.3 Program Modifications

5.3.1 Implementation of User-Defined Action

Vax Version

In order to implement a new action, one must do the following:

1. Select an action code for use with this action. Each action must have
a unique code.
by the emulator.
University of Illinois.
(decimal) may be used.
Create the action data structure for this action according to the
layout in A-35 and include it in *mems.dat.
Write a new Fortran subroutine module to perform the action. See the
already existing action modules, ACT2, ACT3, ACT6, A m , or ACT8 t o
see how this is done. Compile the new Fortran action subroutine.
Modify the Fortran Module EXlACT (see A-9) to include a branch to the
new action. Compile EXlACT. Modify the emulation link file emu.opt
to include linking of the new subroutine.
$@emulink (see Section 5.1.1)

4. Include an external connection from some device in the netlist to the
master action control bit and another to some bit in the action
control buffer, in order to trigger the action.
to high on the output line of this device will then trigger the
action.

The codes 1 through 30 (decimal) are reserved for use
The codes 50 through 55 are reserved for use by the

All other codes up to and including 127

2.

3.

A transition from low

QM-1 Version

All of the above would be done.
microcoded routine "Exlact" and would create and assemble a new action
routine written in the Multi language.

One would modify the corresponding

5.3.2 Instructions for Increasing Array Sizes

Vax Version

-47-

If one wishes to modify the array sizes for the components of the system, one
should follow the steps below:

1. Modify the dimension parameter(s) in the module "emuparam.for".
Listed below are the parameters which specify the array sizes.
to the right of each parameter explains what that parameter represents.

The comnent

C EMUPARAM.FOR
C dimension parameters

parameter (yndevi = 6000)
parameter (~ C O M = 14000)
parameter (ynstac = 500)
parameter (yncomm = 100000)
parameter (ynmems = 30)
parameter (ynei = 20)
parameter (yneo = 20)
parameter (ynupc = 15)
parameter (ynstat = 500)
parameter (ynchid = 1000)
parameter (pcslow = 0)
parameter (pcsup = 20000)
parameter (p l o w = 0)
parameter (p u p = 120000)
parameter (plslow = 0)
parameter (plsup = 31)

!maximum number of devices
!maximum number of internal connections
!maximum no. items on stack at one tinre
!maximum no. bytes for device colfflrents
!maximum no. target memories
!maximum no. external input sets
!maximum no. external output sets
!maximum no. user print choices
!maximum no. state information devices
!max no. devices to change at one time
!control store low address
!control store high address
!main store low address
!main store high address
!local store low address
!local store high address

2. Recompile and link all programs (initialization programs and emulation
programs) as described in Section 5.1.1.

5.4 Running the System
It is assumed for the purposes of describing these files that the user is

familiar with Fortran Formats. All of the formats listed here are in the
Fortran language.

For all initialization and emulation runs executed on the Vax, all file
names must be valid Vms file names. For a particular target hardware, all input
and output files should be on the same subdirectory and must begin with the sam
user-defined prefix.
For the purposes of this document, the prefix is always denoted with '*".
example, assume the user specifies "counter" as his prefix.
document, *mems.dat would represent "countermems.dat".

The suffixes are predetermined and listed in A-7 and A-8.
For

Then, in this

5.4.1 Initialization of Target Hardware on Vax

5.4.1.1 General

Before a given network can be emulated, it must be initialized. The
initialization process is one in which the inputs are a description of the
netlist in DENF format, the initial contents of the target memories, the
initialization run-time options, and the device descriptions to appear on the

-40-

emulation stack outputs; the principle output is a complete description of the
netlist with initial output values defined, and a complete representation of
the initial memories, both in the binary form required by the emulator.

Four input files are required for running the initialization program.
output files are always produced, and another four output files are sometimes
produced, depending upon the options the user has requested in *iopts.dat.

Inout Files

Two

*net . dat

*mems . dat

*iopts.dat

*corn. da t

*sav. dat

*iout .dat

*mat .dat

*extrn.dat

*alph.dat

Required Files

The target network description(net1ist)in DENF
format. See Section 5.4.1.2.1.

The initial values to be resident in the host mmry
before the emulation begins. See Section 5.4.1.2.2.

The run-time initialization parameters. See Section
5.4.1.2.3.

The comments or descriptions to appear alongside
device names when they appear on the stack output.
See Section 5.4.1.2.4.

Mandatorv Outmt Files

Initialized System State File: Binary netlist and
memories to be used as inputs to the Vax emulator.

Text output which varies according to the options
that the user has requested in *iopts.dat.

ODtional Outmt Files

Netlist in a form to be used by the QM-1 for
emulation.
turned on in *iopts.dat.

This file is only produced if item 0 is

Initial contents of control store external registers
in a form to be used by the QM-1 for emulation.
file is only produced if item 0 is turned on in
*iopts.dat.

This

A list in alphanumeric order by device name of all
the devices in the netlist. Included with each
device is the device name, device index number,
device type, device class, and initial output value
of the device, in the format
(lX,A20,1X,I4,1X,2?dO,lX,Il). This file is only
produced if item R is turned on in *iopts.dat.

-49-

*nam.dat A list in alphanumeric order by device name of all
the devices in the netlist. Included in each record
is the device number in decimal followed by the
device number in octal followed bv the device name in
the format (lX,I4,lX,o6,1X,A20). This file is
produced to aid the user in creating a meaningful
*comm.dat.

.

Following is a detailed description of each file:

5.4.1.2 Input Files

5.4.1.2.1 Netlist File

The network description completely defines the target network of gate-
level logic and the interconnections among the devices, all in the DENF forma
Normally, this file would be qenerated from some preprocessor or translator.

-.
Each dehce and its fanout is-described by a group of records, referred to as
the "device definition".
NOR, NOT, XOR, NJCOR), a tri-state device or a flip-flop.
the name of the device being defined.
ascending order by device name, according to the ascii collating sequeme.
Within each device definition, the records must be in the order as specified
below.
definition varies according the device type.
present is 6000.
maximum number of external connections is 6000. These numbers can be increased
should it become necessary by changing dimensions in Fortran programs (see
Section 5 . 3 . 2) .
corresponding to:

A device is defined as a regular gate (AM), " D , O R ,
Each record contains

Ihe device definitions rrstbe in

The group of records necessary to specify a particular device
The maximum number of devices at

The maximum number of internal connections is 14000. The

There are four different types of Device Definition

1. regular gate other than XOR or NJCOR
record 1: <device description>
record 2 and following: <internal connections>

<external connections>

2 . XOR or M O R gate
record 1: <device description>
record 2: <xor specification>
record 3 and following: <internal connections>

<external connections>

3 . tri-state device
record 1: <device description>
record 2: < t ri-state specification>
record 3 and following: <internal connections>

<external connections>
4. fli flo a <device description>

record 2: <flipflop spe&.fication I>
record 3: <flip-flop specification 2>
record 4 and following: <internal connections>

<external connections>

-50-

where:
<internal connections> := one or more <internal connection>
<external connections> := zero or more <external connection>

Record Types:

<device description) format: (lx,a20,i3,8x,i3,4(7x,i3))
contents: NAME,SEQUEN,CLASS,TYF'E,VALUE,NICON,NECON

<xor specification) format : (lX,A20,13,8X,13)
contents: NAME,SEQuhl,XORNN

<tri-state specification> format : (lX,A20,13,8X,13)
contents: NAME,SEQUEN,VDIS

<flip-flop specification 1) format : (lX,A20,13,8X,O3)
contents : NAME, SEQUEN, FFVALUE

<flip-flop specification 2> format :(lX,A20,13,8X,13,7X,I3)
contents: NAME,SEQUEN,R,U

<internal connection> format : (lx,a20,i3,12x,a20,6x,i3,7x,i3)
contents: NAME,SEQUEN,ZNAME,RENER,CONNT

<external connection> format : (lX,A2O,I3,1X,4(7X,I3))
contents: NAME,SEQUEN,CSMSF,REGNO,BITNO,REVER

The symbols used for the "contents1' above are, as follows:

NAME

SEQUEN

CLASS

TYPE

Device Name: the unique device name. The name must be at least one
but not more than 20 printable ascii characters. while the name may
contain any valid ascii printable characters, it must be remembered
that in the netlist, these names must be in ascending order
according to the ascii collating sequence. It Ghould also be noted
that the two dunmry devices used for faulting must be the last two
devices in the netlist, and so must be named appropriately. Also
note that upper case and/or lower case letters may be used in the
name, but at any other point in an input file in which the name
appears, the case must match, character by character, the case used
in the netlist name.

Sequence Number-this number is not used by the emulator.
included in order to keep the records for one device in order during
any sort by device name.
left blank.

It is

For purposes of the emulator, it may be

Device Class
l--Gte

Gate Type

-51-

O=f lip-flop
1=AND
2 = " D
3=0R
4=NOR
5=NOT
6=XOR
7=NXOR

VALUE Initial value on output line:
User-initialization (item B in Init. Options File = 0):
Value must be 0 or 1
Program will use the user-assigned value if there is no
inconsistency. If there is an inconsistency, the user will be
notified, and the calculated value will prevail.

Program-initialization (item B in Init. Options File - 1):
Value must be 9
Program will attempt to calculate the value.
will notify the user.)

If it cannot, it

NICON Number of internal connections (This number represents the number of
devices in the network to which the output of this device fans out).
This number must be greater than zero.

Munber of external connections (This number represents the number of
"external" or "pseudo" connections to which the output of this
device goes.
network, but are used to hold output values of devices for the
functional emulation.)

NECON

These connections are not part of the internal

This number can be zero or greater.

FOK XOR and MoaR gates only:

XOR" The exact number of input lines which must be high in order for the
outpumne to be high.
than or greater than this number, the output line will be low.

If the number of high input lines is less

FOK FlipPlops Only:

FFVAL Initial Flip-flop values(PCTL,JK)
This is an octal value which represents the initial value for bit
positions 0-5 of the flip-flop header word.
P connection, bit 4 on the C connection,etc.
See A-25, Device header Layout (FlipFlop).

For the purposes of initialization:
P and C: the default is negative logic, i.e., the value of 1 is

benign, and 0 is active on the preset and clear lines.
can be overridden at the time of initialization with a flag
in the options file.

overridden at the time of initialization by using a
connection type of -3 rather than 3 .

Bit 5 is the value on the

This

T: the default is negative edge-triggered. This can be

Note : During initialization, any value initialized by the user may
be overridden if the program discovers an inconsistency.

-52-

R (Used for RS flip-flops)
Indeterminate Flag 1.
Flop, word 1, bit 9.
be 0 if this feature is not to be used.

See A-28 and A-29, Device Connector to Flip
Also see Migneault[2]. The initial value should

U (Used for RS flip-flops) Indeterminate Flag 2. See A-28 and A-29,
Device Connector to Flip-Flop, word 1, bit 8. Also see Migneault[2].
The initial value should be 0 if this feature is not to be used.

For Tri-States only:

The value the output line of the tri-state is to assume when it is
disabled.

VDIS
This value may be 0 or 1.

For Each Internal Connection:

ZNAME Name of the destination device, i.e., the name of a device to which
this device fans out.

REVER Reversal flag (reversal meaning same as inversion)
O=no reversal entering the destination device
1-reversal entering the destination device

C0"T Connection type
0 = connection to a gate, or connection to a tri-state but not the

1-P connection to flip flop
2-C connection to flip flop
3=T connection to flip flop (downward edge-triggered)

4=L connection to flip flop
5=J connection to flip flop
6=K connection to flip flop
7=D1 connection to flip flop
8=Enable line to tri-state

enable line of the tri-state.

-3=T connection to flip flop (upward edge-triggered)

"D" connection is one in which the K input is always the complement of
the J input.

For each External Connection:

CSMSF

REGNO

BITNO

Control Storemain Store
0-Control Store, l=Main Store
Register Number
The number of the external register.
Register 1.
Bit Number
The number of the bit within the register.
17.
bit is 17. This number is decimal.

These are numbered beginning w i t h
The number is decimal.

These are numbered from 0 to
The least significant bit is numbered 0, and the most significant

-53-

REVER Reversal flag (or inversion flag)
O=no reversal entering the external register
ltreversal entering the external register

See Appendix C for a sample of a network description file.

5.4.1.2.2 Memories File

The memories file specifies the values which are to be resident in the
control store and the main store of the QM-1 at the beginning of the emulation,
but which are not generated by the initialization program and must therefore be
supplied by the user. For most emulations, these initial memory values are:

In control store:
memory read and/or write actions
user-generated actions
action control block
initial memory data register contents

In main store:
actual contents of target memories

Format

The memories file may contain seven different record types. They are as
follows:

~ y p e 1: column 1 contains "!"
meaning:
by emulator

meaning:
record are of type 6 or 7, and they represent the contents of a
target ROM.

Remainder of record contains comments which are not used

~ y p e 2: columns 1-3 contain "ROM" (must be upper case)
Remainder of this record is blank. Records following this

~ y p e 3: columns 1-3 contain "RAM" (must be upper case)
meaning:
record are of type 6 or 7, and they represent the contents of a
target RAM.

Remainder of this record is blank. Records following this

type 4: column 1 contains "C" or "c"
meaning: The remainder of the record contains octal values separated
by commas.
have leading blanks. The first octal value represents the beginning
control store location into which the remaining values will be
consecutively placed.

Each octal value can occupy up to six columns and can

type 5: column 1 contains "D" or "d"

-54-

meaning: the reminder of the record contains octal values separated
by commas.
have leading blanks. The first octal value represents the beginning
control store location into which the remaining values will be
consecutively placed. The only difference between type 5 and type 4
is that for type 5 the values to be placed into control store
represent device index numbers.
preparing data for QM-1 emulation runs.

Each octal value can occupy up to six columns and can

This type need only be used when

type 6: column 1 contains "M" or "m"
meaning: the reminder of the record contains octal values separated
by commas.
have leading blanks. The first octal value represents the beginning
main store location into which the remaining values will be
consecutively placed.

Each octal value can occupy up to six columns and can

type 7: column 1 is blank
meaning: the remainder of the record contains octal values separated
by comas. Each octal value can occupy up to six columns and can
have leading blanks. The first octal value in this case is not a
location but the value to be placed into the next consecutive
location after the last location of the previous record. The
remaining values will be consecutively placed.

Note regarding the order of the records in the memories file:

All records describing the contents of €OMS and/or RAMS should be at the
end of the memories file. All the records for one RO!4 or RAM must be
contiguous.
location comes from the previous record. All other records besides those just
mentioned are independent of order.

Obviously, all records of type 7 are order-dependent, since the

Note regarding the relocation of RGfS and RAMS:
Immediately preceding the first record for each target memory, a record

must be inserted which consists of the word "RAM" or "ROM" in c o l m s 1-3. It
is used to identify the beginning of each new target memory for purposes of
relocating it in the QM-1 memory and for identifying the memory identification
for memory fault insertions.

The user may, if he desires, request that the initializer relocate one or
more ROMS and/or RAMS in the QM-1 memory. If he chooses to do this, he
supplies the relocation constant to the program, and this relocation constant
is automatically added to the location in the record. (see Section 5.4.1.2.3,
items Vl ... Vn).

Note regarding in-record cormrents:

after the "!" will be treated as comments.
For any type listed above, if r c f ' c . appears in any column, then all columns

-55-

5.4.1.2.2.1 Sample Memories File

Following are examples of records within a memories file, *mems.dat.!

1 Memories File <-
! This file contains all values to be placed
! during initialization into the QM-1
! memory, both control store and main store.

! action #6, operations action <--J
c002725,030000 !codem6 <-

1

c002726,000000 !ptr to next action
c002727,000000 !reschedule time
c002730,002400 !action address table-bank 1
~002731,002440 ! memory bank 2
~002732,002532 ! memory bank 3
~002733,002600 ! memory bank 4
C002405,4406
C002406,0,37
13,35,4763
!

!CS location of data register
!valid addresses for this memory

<-

- (type 1)
(not used by
emulator)

CCWMlL -
(see note 1)

- (t y p e 4 1

(type 7)

1 MEMORY #1, ROM8.32.1, SEQUENCX EtNTRoL ROM
,, ROM (type 2) (see note 2)

M005000,306,307,310,311,264,264,264,264,266,312 <1 MAIN SrOlRE -(type 6)

M005020,153,154,155,156,0,0,0,0,264,265,266 <-I (see note 3)

1

ROM
M 0, 41, 16, 45, 14, 27, 17, 43, 15
M 10, 50, 40, 44, 34, 51, 46, 42, 35
M 20, 262, 272, 276, 102, 264, 273, 277, 103

! MEMORY #3, W6.64.1
!
RAM (type 3) (see note 4)
M 0000,110001, 440,

1

MEMORY #2, ROM8.512.1, MICROCODE S m T ADDRESS ROH

1

1

"SlORE
(types 6,7)

(see note 5)

0400, 1401, 4001, 1401, 4002, 1401, 4003
0406, 1401, 4004, 1401, 4005, 1401, 4006
0420, 1401, 4011, 1401, 4012, 1401, 4013
0432, 1401, 4016,177400, 11000, 77416, 41017 <

Note 1: The first record causes 30000, to be placed into control store
location 2725,.
store location 2726 , etc.. The ninth record places 0 into location
2406, and 37, into location 2407,. The tenth record places 13, into
location 2410,, 35, into location 2411 and 4763, into location
2412,. Note that all of the text to &e right of the " l " is merely
comments.

The second record causes 0 to be placed in control

Note 2: The records that follow (until the next type 2 or type 3 record)
contain the contents for the next target ROM.

. I

-56-

Note 3: These two records contain contents for a target ROM.
record places the value 306, into main store location 5000,, 307,
into location 5001, ..., and as the last value for this record,
places 312, into location 5011,. The second record causes 153 to
be placed into main store location 5020 , 154, into location 5821,,
etc.. . , and finally 266, into location 5032, .
The records that follow (until the next type 2 or type 3 record)
contain the contents for the next target RAM.

The first

Note 4:

Note 5: These records contain contents for a target RAM. The first record
places the value 110001, into main store location 0, and the value
440, into location 1.
location 2, 1401, into location 3, ..., and finally 4003, into
location lo,, etc..

The second record places the value 400, into

5.4.1.2.3 Initialization Run-Time Options File

The initialization options file *iopts.dat is an input file which contains
parameters and user selections for the initialization run.
options file is usually prepared manually with an editor.
sample initialization options file. It can be used as a template for the
user's preparation of his own file. Following the sample is a description of
each of the records in an initialization options file.
the discussion, the individual records in the sample have been labeled on the
far right with capital letters. Some of the items in this file are no longer
used or are used only for debugging purposes.
currently used that are relevant to the general user are so labeled.
capital letters are merely for documentation purposes. The general user need
only be concerned with the labeled items.
left at the values in the sample, but they must be present in the file in the
order indicated.
be produced.
be produced as part of the *iout.dat file. If this is not the case, the name
of the file produced is noted in the item description.

The initialization
Listed below is a

In order to facilitate

For that reason, only the items
These

For all other items, they can be

Items I through S control whether various option outputs will
In each case, unless otherwise noted, the particular output will

5.4.1.2.3.1 Sample Initialization Run-Time Options File

label for each record is a capital letter appearing to the far right of the
record.
the record.

The output options 1-50 (items I through S) are switches which control
which outputs are produced. These options have no effect whatsoever on the
initialization but are merely for the user's benefit if he wishes to see the
initialization process in more detail (especially when the network has
initialization problems). In each case, a 1 means the option is turned on and
the corresponding output will be produced, while 0 means it will not.
otherwise noted, the particular output will be produced as part of the
*iout.dat file.
noted.
values are

Following is a sample of an Initialization Options file, *iopts.dat. The

It is for documentation purposes only, and does not actually appear in

Unless

The records not labeled with a capital letter are not used (i.e., the
If this is not the case, the name of the file produced is

"don't care", but must still be present).

-57-

Note: In each record, text following the "!" is canrnents

Abbreviations:
In what follows, the abbreviation ei is used for
external inputs, and the abbreviation eo is used for
external outputs. The abbreviation cs is used for control store,
and m s is used for main store.
the name of a file represents the user-supplied prefix.

An asterisk (*) preceding

Sample *iopts.dat File

Any Title ! Title for hardware being emulated A
4 I
0
1
020000
004000
000000
004001
004430
000001
004427
002720
002000
50
003760
002725
ZZZFAULTER
004400,004407
000000,000000
000000,000010
1
1
0
1
1
1
1
1
0
0
1
1
0
1
0
1
0
0
0
1
1
0
1

! initialization flag Oluser, 1-computer
! user Val for no-input devices
! preset-clear convention flag
! cs address for netlist
! cs address for external registers
! m s address for external registers
! cs address for time
! cs address of action control block
! number of "control bit" words
! cs address of master action control register
! cs address of stop action
! cs address of free space list
! number of free space records
! main store address of fault block
! cs address of operations action data structure

! name of faulting device
! cs lo,hi address for dump
! ms
! 1s
!*l initial device headers **first output option**
! 2 not used
! 3 not used
! 4 not used
! 5 not used
! 6 not used
! 7 not used
!*8 control store memory dump
!*9 main store memory dump
!*lo local store memory dump
!*11 not used
! 12 not used
! 13 not used
! 14 netlist in QM-1 format
! 15 not used
!*16 connections list
! 17 not used
! 18 not used
! 19 not used
!*20 devices with undefined output values
! 21 devices with defined output values
! 22 not used
! 23 not used

O:l=benign 1:llactive

11 11

11 11 11

B
C
D
D1
D2
D3
D4
D5
D6
D7
D8
D9
D10
D11
D12
E
F
G
H
I

. '

K
L
M

0

P

0
QQ

-58-

1
0
0
0
0
0
0
1
1
1
1
1
1
0
0
0
1
0
0
0
0
0
T
0
0
0
0
0
0
0
1,1,1
2
Xl *****

3
001000
005500
006300
1
005000
000200
004500
004540
000160
000200
000150
015000
020000
000031

! 24 memory dumps at stop time NN
! 25 alphabetized list of devices R
! 26 not used
! 27 device name list S
! 28 not used
! 29 not used
! 30 not used
! 31 not used
! 32 not used
! 31 not used
! 32 not used
! 33 not used
! 34 not used
! 35 not used
! 36 not used
! 37 not used
! 38 not used
! 39 not used
! 40 not used
! 41 not used
! 42 not used
! 43 cs initialized external registers in QM-1 format

! 44 not used
! 45 not used
! 46 not used
! 47 not used
! 48 not used
! 49 not used
! 50 not used

!not used
!not used

! stack items
1

I

I

I

! no. of target memories
! relocation constant for memory 1
! relocation constant for memory 2
! relocation constant for memory n
! divisor to right justify target address
! address in cs for first ei action
! not used
! address in cs for first ei address reg
! address in cs for first ei data reg
! address in cs for first eo action-beg of eo
! not used
! address in cs for first eo address reg-end eo
! highest loc in cs to go to save file
! highest loc in m s to go to save file
! highest loc in Is to go to save file

-59-

U

V
v l
v2
vn
W
X

Z
AA
BB

DD
EE
FF
GG

5.4.1.2.3.2 Record Descriptions for Init. Run-Time Options File

A

B

C

D

D1

D2

D3

D4

I D5

D6

I D7

Formats:
In each item, the Fortran format follows in parentheses after the
name of the item.

Descriptions:

Title (10a4) : Any title which describes the target hardware.
This title will appear at the beginning of the initialization output
file *iout.dat and at the beginning of the emulation output file
*eout .dat , preceded by "TARGET MACHINE: ".

Initialization Flag (11)
If set to 0, user must supply output values for all devices in *net.dat.

If set to 1, user will supply at least one device output value, but may
supply more. Program will attempt to calculate any values not supplied.

For each device which does not have any inputs, and no predefined value,
this value will be used as its output value.

User-supplied value for devices with no inputs (11)

Preset-clear convention flag (11)
If set to 0, then a value of 1 on either the P or C input to any flip
flop will be treated as benign, i.e., will not cause the output value to
be set or cleared respectively.
If set to 1, then a value of 1 on either the P or C input to any flip
flop will be treated as active, i.e., will cause the output value to be
set or cleared respectively.

Control Store Address for Netlist (06)
The starting address in control store for the binary netlist(06)

Control Store Address for External Registers (06)
The starting address in control store for external registers. (the first
register is referred to as register number 1)

The starting address in main store for external registers.
Main Store Address for External Registers (06)

(not generally used)

Control Store Address for Time (06)
The address of some cs external at which the current t i e will be stored
at each clock cycle, to be available for output if so desired.
be dumped in any format by using items Zl and 22 in the *eopts file.

The starting address in control store of the action control block.

The number of QM-1 18-bit words needed to hold all the control bits for
the emulation.

It can

Control Store Address of Action Control Block (06)

Number of "Control Bit" Words in Action Control Block (*)

Control Store Address of Master Action Control Register (06)

-60-

The control store address of the master action control register which
contains the master bit which goes high any time at least one control
line goes high.

D8 Control Store Address of Stop Action (06)
The starting address of the stop action in control store.

D9 Control Store Address of Free Space List (06)
The starting address in control store of the free space and
event lists.

D10 Number of free space records (*)
The maxim number of free space records to provide space for.
record takes three QM-1 words.

Each

Dll Address of fault block in main store (06)
The starting address in main store where the fault list will reside.

D12 Control Store Address of op action data structure (06)
The control store address of the op action (action 6).

E Name of Faulter Device (MO)
The name of the device to be used for faulting gates.

The starting address(in octal) of the block of control store to be
dumped, followed by the ending address(in octal) of the block of control
store to be dumped.
print option 8(item K) is on.

F QM-1 Control Store Dump Locations (06,1X,06)

The dump takes place after initialization only if

G QM-1 Main Store Dump Locations (06,1X,06)
Same as F, but for Main Store and print option 9(item L).

H QM-1 Local Store Dump Locations (06,1X,06)
Same as G, but for Local Store and print option lO(item M).

I Initial Device Headers (11)
If this option is turned on, the initialization output will
contain a list(in octal) of the initial header word for each
device in the netlist along with its QM-1 control store address.

If this option is on, the control store range specified in item F
will be dumped after initialization.

If this option is on, the main store range specified in item F
will be dumped after initialization.

If this option is on, the local store range specified in item F
will be dumped after initialization.

K Control Store Dump Option (11)

L Main Store Dump Option (11)

M Local Store Dump Option (11)

0 Netlist in QM-1 format (11)

-61-

P

Q

QQ

R

S

T

U

V

If this option is on, a file (*mat.dat) will be produced which can be
sent to the QM-1 for emulation on that machine.
entire netlist in a matrix form to be used by the QM-1.
would only be on if one is intending to do the emulation runs on the QM-
1.

This file contains the
This option

Connections List (11)
A complete list of the network, showing for each device, all the devices
which feed into it, the device types, and the initialized output value
for each device.

Devices with undefined output values (11)
A list of all devices for which the program was not able to determine
the output value.
problem, and rerun the initialization.
to see if there are any problems in the netlist description.

The user should analyze the netlist, correct the
This should usually be turned on

Devices with Defined Output Values (11)
A list of all devices for which the program was able to determine the
output value.

Alphabetic List of Devices (11)
If this option is on, a file(*alph.dat) will be produced.
contains the name,number, type, class, and initial output value of each
device in the netlist, in alphanumeric order by name.

This file

Device Name List (11)
If this option is on, a file(*nam.dat) will be produced.
to be used as a template for use with some editor to manually produce
the file *connn.dat. It would normally only be necessary to produce this
file once, and then to edit it as changes are made to the netlist.
is not necessary to produce this file at all if conunents are not desired
in the stack dumps produced during the emulation runs.
5.4.1.2.4.

This file is

It

See Section

Control Store Initialized External Registers in QM-1 Format (11)
If this option is on, a file (*extrn.dat) will be produced which
contains the control store initialized external registers in the format
necessary to be sent to the QM-1 for emulation on that machine.
option would only be on if one is intending to do the emulation runs on
the QM-1.

This

Stack Item(s) (A201
The names of all devices on the initial stack. There will be one record
for each device on the initial stack. There must be at least one item
in this list.
will be used for each run in the batch.

The items can be in any order. The same initial stack

Munber of target memories (*)
If this value is 0, then items Vl through Vn are not to be included.
this value is greater than zero, say n, then Vl through Vh must be
included.

If

- 1

I Vl..Vn Memory Relocation Constants for memories 1 through n (06)

-62-

W

X

Z

AA

BB

DD

EE

FF

The number of locations by which each target memory will be relocated in
the QM-1.
and thus must have some relocation constant to map it into the memory of
the QM-1.
may either be manually relocated in the QM-1's memory by the user, or
may be relocated by the program. If the user does the relocation, enter
a 000000 here.
relocation constant here.
memory addresses for main store in the *mems.dat file are absolute QM-1
addresses, i.e., the actual target address plus the QM-1 relocation
constant. If the program is to do the relocation, then each main store
address in the *mems.dat file is the target memory address. Regardless
of whether or not the relocation constant is zero or greater than zero,
the actual address register must contain the target address, i.e., the
relocation constant is not included in the address in the address
register.

Each target memory is stored in the main store of the QM-1,

The contents of each target memory as specified in *mems.dat

If the program is to do the relocation, enter the
If the user does the relocation, then all

The target memories must all appear at the end of the *mems.dat file
an order corresponding to the order of the relocation constants
appearing here.
numbered consecutively in the order in which they appear in *=ms.dat.
The relocation constants in *iopts.dat must correspond in number and
order to the memory contents in *mems.dat.

The parer of 2 by which the 18-bit emulated address register must be
divided to right justify the address in an 18-bit word.

in

The memories are identified starting with 1, and are

Divisor to right justify emulated address register (*)

The QM-1 control store address at which the first
action is to be stored (06).
The rest will be stored contiguously.

The QM-1 control store address where the first ei
stored (06).

The QM-1 control store address where the first ei
stored (06).

The rest will be stored contiguously.

The rest will be stored contiguously.

The QM-1 control store address at which the first
action is to be stored (0 6) .
The rest will be stored contiguously.

The QM-1 control store address where the first eo
stored (06)
The rest will be stored contiguously.

computer-generated ei

address register will be

data register will be

computer-generated eo

address register will be

The highest location in the control store save areal (to be saved in
*save.dat) by the initialization program (0 6)
The save area begins with location zero.

The highest location in the main store save areal (to be saved
in *save.dat) by the initialization program (0 6)

-63-

The save area begins with location zero.

GG The highest location in the local store save areal (to be saved
The save area in *save.dat) by the initialization program.

begins with location zero. (0 6)

Save Areas At the beginning of an emulation batch, initialized data
structures are read from disk and stored in the -1
memory. Certain of these data structures nnay change
during a run, but some do not. Thus the ones which
change are kept in the low portions of control store and
main store so they can readily be restored before each
run. The low word of a save area is always 0, but the
highest word is specified by the user in *iopts.dat.

5.4.1.2.4 Device Comments File

The comments file specifies for each device listed in the file the
descriptive comment that will appear to the right of the device name each time
that device appears on the stack in the emulation text output file, during the
emulation.
usually means that he is analyzing the results of the emulation at each clock
step, or he is trying to follow the behavior of some device during the
emulation. At such times, it has been found that with large number of devices
in the netlist, seeing the device name on the stack is not sufficient to remind
the user of the function of the device, and hence these descriptive c m n t s
are provided. Thus, when the device name appears on the stack, the canment
reminds the user of the function of the device.

Because of the potentially large number of devices in a netlist, an
optional aid was provided to enable the user to produce this camnents file.
When he runs the initialization the first time, he can provide an empty
*comm.dat file, but turn on item S in the *iopts.dat file. By doing this a
skeleton file will be produced containing all the device names in alphabetical
order, and then all the user need do is edit the file, adding the descriptive
comnents. For any devices for which he does not desire any comments, he can
merely delete that device record from the file OK just leave the record with no
comment. Then he must run the initialization again, this time using the newly
edited file as the *comn.dat file.The file produced by turning on item S has
the following format and contents:

The stack is only printed when the user requests it. This

Fortran Format for each Record: (lX,14,lX,C%,lX,A20)
Contents of each Record: Device Number in decimal

Device Number in octal
Device Name

The format required for the *com.dat file is:

Fortran Format for each Record: (13X, A20,1X,A70)
Contents of each Record: Device Name

Device Description or Coarments

It can be seen that the device number in decimal and octal are not needed
but that the user can leave them and merely add the description.

. /

- 1
I

-64-

On the other hand, if the user desires, he can create the *comn.dat f i l e
independently of the emulator using whatever method he desires, merely using
the format (13X,A20,1X,A70).

Following is an example of a *com.dat f i l e that was in i t i a l ly created by
turning on item S and then editing the output fi le::

5.4.1.2.4.1 Sample Device Comments File

2
3
5
6
7
8
9
10
23
24
25
26
27
28
29
30
31
32
33
34
35
36
49
495
496
497
498
499
500
501
507
508
509
510
511
512
513
514
515
3168
3169
3170
3171

2 FFA'CPUIC06
3 FFA'CPUIC13
5 FFA'CPUIC28
6 FFA'CPUIC71
7 FFAOCWIC39
10 FFAOCPUIC40
11 FFAOCPUIC42
12 FFAOCPUIC43
27 FFACPUICO6
30 FFACPUIC13
31 FFACPUIC21
32 FFACPUIC28
33 FFACPUIC71
34 FFB'CPUIC06
35 FFB'CPUIC13
36 FFB'CPUIC21
37 FFB'CPUIC28
40 FFB'CPUIC71
41 FFBOCPUIC39
42 FFBOCPUIClO
43 FFBOCPUIC42
44 FFBOCPUIC43
61 FFBCPUIC06
757 GAOBCPUIC29
760 GAOBCPUIC32
761 GAOBCPUIC35
762 GAOBCPUIC38
763 GAOCPUICOl
764 GAOCPUICO8
765 GAOCPUIC15
773 GAOCPUIC45
774 GAOCPUIC52
775 GAOCPUIC59
776 GAOCWIC66
777 GAOCWIC70
1000 GAOLCPtJIC29
1001 GAOLCWIC32
1002 GAOLCPUIC35
1003 GAOLCPUIC38
6140 TSY3CPUIC39
6141 TSY3CPUIC40
6142 TSY3CWIC42
6143 TSY3CPUIC43

Fov single b i t overflow flop
IND indirect storage flop
A* flop - repeat counter

b i t 12 T register - 9407 mem addr processor
b i t 8 T register - 9407 mem addr processor
b i t 4 T register - 9407 mem addr processor
b i t 0 T register - 9407 mem addr processor
FOV* single b i t overflow flop
IND* indirect storage flop
IR04 - instruction register
A flop - repeat counter
NOT USED
PFEIN interrupt enable flop
LINK used by micro program
IR05* - instruction register chip
B* flop - repeat counter

b i t 12 P register - 9407 mem addr processor
b i t 8 P register - 9407 mem addr processor
b i t 4 P register - 9407 mem addr processor
b i t 0 P register - 9407 mem addr processor
PFEIN* interrupt enable flop
AO* RAM latch output* - 2901
AO* RAM latch output* - 2901
AO* RAM latch output* - 2901
AO* RAM latch output* - 2901
UMAO - micro memory prom address
UMAO - micro memory prom address
UMAO - micro memory prom address
addr input YO8 - START ADDR PEEOEI
UMAO - micro memory prom address
UMAO - micro memory prom address
UMAO - micro memory prom address
addr input - sequence control PRQM
A0 RAM latch output - 2901
A0 RAM latch output - 2901
A0 RAM latch output - 2901
A0 RAM latch output - 2901
D14 output - 9407 mem addr processor
D10 output - 9407 mem addr processor
DO6 output - 9407 mem addr processor
DO2 output - 9407 mem addr processor

FLAG1

FLAG2

-65-

,

3172 6144 TSY3CPUIC62 uMA9
3177 61Sl TSY4CpUIC62 SPARE
3178 6152 ZDUMMYCLOCK
3179 6153 ZGTSQlCPUIC30 MT15 - output register and
3180 6154 ZGTSQlCPUIC31 mT07 - output register and
3196 6174 ZMEEI1CON2
3197 6175 ZSELECrCPUIC MICRO MEMORY READ

For example, using the above as the *conun.dat file: if the device
FFA'CPUIC06 were on the stack, the corm\ent "FOV single bit overflow flop" would
be printed to the right of the device name.
appear on the stack, no comment would appear, since that device does not appear
in this file.
comment would follow, since it appears in this file, but with no camment.

If the device ADuMmINpvT were to

Also, if the device ZDUMMYCLOCK were to appear on the stack, no

I 5.4.1.3 Initialization Output Files

I
5.4.1.3.1 Initialized System State File

The initialization program initializes the entire netlist, the external
registers, and the target memories and captures this initial state of the
entire system in a single binary file *save.dat. This file then becomes an
input to the emulator. This file must be created each time any part of the
netlist, target memories, device coments, or values in *iopts.dat changes.
Once the system state file has been created to the user's satisfaction, the
initialization need not be run again. The system state file is transparent to
the user, other than the fact that he should be aware of its existence so that
he does not inadvertently delete it.

5.4.1.3.2 Initialization Text Output File
The contents of the initialization text output file(*iout.dat) created by

the initialization program are almost completely under the control of the user.
In the input file, *iopts.dat, he specifies what outputs he wishes to appear in
this file.

Mandatory outputs
The first line of the file is the run date and time. The second line

If there are any gates in the netlist which have no inputs, then the third

"ASSIGNMENT OF O / l To FOLLOWING GATES WITH NO INPUTS:", and is followed by a

begins with the text "TARGET MACHINE:" and is followed by the text which the
user inserted in item A of *iopts.dat.

line consists of the text:

list of devices for which no inputs were defined by the user. The initializer
thus assigned the output value(0 or 1 as specified in item C of *iopts.dat) to
all of these devices.
appear. ."

Optional Outplts

~

If there were no such devices, this output does not

I

-66-

All other outputs are optional and are controlled by the user in
*iopts.dat.
in *iopts.dat.
File.

The optional outputs are selected by the user in items I through T
See Appendix B for an example of an Initialization Text Output

5.4.1.3.3 Initialization Matrix File

If the user is planning to run an emulation on the QM-1, he must do an
initialization run in which he turns on item 14. This will cause the *mat.dat
file to be generated.
netlist in a form which can be processed by the QM-1.

This is a text file which contains the initialized

5.4.1.3.4 Initialization External Registers File

If the user is planning to run an emulation on the QM-1, he must do an
initialization run in which he turns on item 43. This will cause the
*extrn.dat file to be generated.
initialized external registers in a form which can be processed by the -1.

This is a text file which contains the

-67-

5.4.2 Emulation on Vax

5.4.2.1 General

A given network can be emulated only after it has been initialized. The
inputs to the emulation process are : the Initial System State contained in a
binary file produced by the initialization, the Fault List, the Runtime Options
file, and the optional External Inputs. The Text Output file is always
produced, and its contents depend on the options the user has selected.
principle output is the optional External Outputs File(s). Other optional
outputs are the control store and main store files for the QM-1.

The
~

*save .dat

*eopts.dat

*fault.dat

** .dat

*eout .dat

Input Files

Required Input Files

The initialized system state, including the initial
contents of the target memories, produced in binary
form by the initialization program.

The run-time emulation parameters.
5.4.2.2.2.

See Section

The fault list.

ODtional Inmt Files

External Input files, named by the user

Output Files

Mandatory Output Files

Text output which varies according to the options
that the user has requested in *eopts.dat.

Optional Output Files

** .dat External Output files, named by the user

*qmcs .dat Control Store Initial Contents, for QM-1

*qmms .dat Main Store Initial Contents, for QM-1

* summ. dat Timing Summary

** User specifies entire Vax Vms file name rather than just a prefix.

-68-

5.4.2.2 Emulation Input Files

5.4.2.2.1 Initialized System State File

The initialization program initializes the entire netlist, the external
registers, and the target memories and captures this initial state of the
entire system in a single binary file *save.dat. This file then becomes an
input to the emulator. This file must be created each time any part of the
netlist, target memories, device comments, or values in *iopts.dat changes.
Once the system state file has been created to the user's satisfaction, the
initialization need not be run again. The system state file is transparent to
the user, other than the fact that he should be aware of its existence so that
he does not inadvertently delete it.

5.4.2.2.2 Emulation Run-Time Options File

The emulation options file *eopts.dat is the input file which contains
This file allows the parameters and user selections for the emulation run.

user to vary the external inputs and external outputs for each run and also to
vary what outputs he wishes to have produced for each M, without having to
redefine the target machine, that is without having to rerun the
initialization. The emulation options file is usually prepared m u a l l y with
an editor.
a template for the user's preparation of his own file.
a description of each of the records in an emulation options file.
facilitate the discussion, the individual records in the sample have been
labeled on the far right with capital letters which are then referred to as
record identifiers in the descriptions of the records.
this file are no longer used or are used only for debugging purposes. For that
reason, only the items currently used that are relevant to the general user are
so labeled.
general user need only be concerned with the labeled items.
labeled with a capital letter are not used (i.e., the values are "don't care",
but must still be present).

produced as part of the *eout.dat file.
items K through Z6 will be produced.
user-named files (see item BB1).

produced to enable the user to analyze how the emulation is proceeding. These
items in no way affect the emulation, and it is normal to produce none of them
once the emulation is working properly.
AA3 are the specifications for the external inputs and do affect the emulation.

Listed below is a sample emulation options file. It can be used as
Following the sample is

In order to

Some of the items in

These capital letters are merely for documentation purposes. The
The records not

All outputs requested in this file, except for external outputs, are
Item Y controls the time(s) at which

The external outputs are generated in

All items from A through 27 merely control the outputs which are to be

On the other hand, items AA through

See Appendix D for samples of the actual outputs produced.

-69-

5.4.2.2.2.1 Sample Emulation Run-Time Options File
Following is an example of an -lation Options File, *eopts.dat. The

label for each record is a capital letter appearing to the far right of the
record. It is for documentation purposes only, and does not actually appear in
the record.

The output options 1-50 are switches which control which outputs are
produced. These options have no affect whatsoever on the emulation, h t are
merely for the user's benefit if he wishes to see the emulation process in more
detail (especially when the emulation is not working as expected).
case, a 1 means the option is turned on and the corresponding output will be
produced, while 0 means it will not.

In each

Abbreviations:
In what follows, the abbreviation ei is used for
external inputs, and the abbreviation eo is used for
external outputs. The abbreviation cs is used for control store,
and ms is used for main store. An asterisk (*) preceding the
name of a file represents the user-supplied prefix.

I
Any Title
004000,004017
000100,000117
000000,000010

I
I 0

I 0
~ 0

1
1
1
0
1
0
0

0
0

0
0
0
0
0
0
0
0
0
0
0
0
0

I 0

I 0

Sample *eopts.dat File

!Title to describe the Batch A
! cs low ,high address for dump F
! ms low, high address for dump G
! 1s low, high address for dump H
! 1 not used *** First Ou-t option***
! 2 not used
! 3 not used
! 4 not used
! 5 not used
! 6 not used
! 7 not used
! 8 control store memory dump
! 9 main store memory dump
! 10 local store memory dump
! 11 stack dump in full mode
! 12 not used
! 13 not used
! 14 not used
! 15 not used
! 16 not used
! 17 not used
! 18 not used
! 19 not used
! 20 not used
! 21 not used
! 22 not used
! 23 not used
! 24 Memory hunps at Stop Time
! 25 not used
! 26 not used
! 27 not used

K
L
M
N

-70-

1
0
0
1
1
1
1
0
0
0
1
0
0
0
0
0
0
JJ
0
KK
0
LL
0
0
0
0

! 28
! 29
! 30
! 31
! 32
! 33
! 34
! 35
! 36
! 37
! 38
! 39
! 40
! 41
! 42
! 43
! 44

! 45

! 46

! 47
! 48
! 49
! 50

time line
stack size
stack dump in abbreviated mode
insertion and lifting of gate faults
not used
insertion and lifting of memory faults
partial fault list
scheduling and insertion of external inputs
not used
not used
scheduling and generation of external outputs
not used
run numbers
fault file for @I-1
mwry dumps at action-scheduling times
not used
external input list and ei registers for QH-~

external output registers for Qm-1

abbreviated run to produce QM-1 data only

not used
not used
not used

T
U
V
W

DD
DD1
EE

FF

GG
HH
I1

not used ***Last output option***
\ 1,180,l ! start,stop,delta times, for outputs Y

180 ! stop time (not used)
DEVICET ! Device Name(s) for Trace 7

! Sentinel for trace devices 21
time= 0 004001 004013 ! User dump specifications 22
(lx,a7,lx,i5,lx,o6,4x,lO(il)) ! Format for user-specified dump 23

24
DEVICEH ! Devices to have state info dumped z5

! Sentinel for state info.devices 26
1 ! Number of external input lists AA
[bb.edata.toy.ei]toyeil.dat !name of file containing list AAa
8 !no. of b i t s i n each data i t e m AA;!
TSY2U66 !name of fanout device AA3
TSYlU6 6 AA3
TSY3U66 AA3
TSY4U66 AA3
TSY2U6 5 AA3
TSYlU6 5 AA3
TSY 3U6 5 AA3
TSY4U65 AA3

! Sentinel for User dump selections *****

11

11

11

11

11

11

11

1 !number of external output sets BB
eofilel.dat !output file name for this eo set BB1
4 !no. of bits in each output this set BB2
100 !maximum number of items in eo buffer BB3
004440 !cs data register address this set BB4
1,25,1 !reschedule flag, start time, delta time for rescheduling 885

-71-

5.4.2.2.2.2 Record Descriptions for Emul. Run-Time Options File
Description of Records in *eopts.dat File

Formats :
In each item, the Fortran format follows in parentheses after
the name of the item.

A

F

G

H

K

L

M

N

NN

T

U

Title (10A4) : Any descriptive title for the Batch.
This title will appear at the beginning of the emulation
output file *eout.dat, following the title for the
target machine and preceded by "BATCH:"
to begin any corrnnents beyond column 40).

(One should be sure

QM-1 Control Store Dump Locations (06,1X,06)
The starting address(in octal) of the block of control store to
be dumped, followed by the ending address(in octal) of the
block of control store to be dumped. The dump takes place
only if print option 8 (item K) is on, and occurs at the
times specified in item Y. It also takes place at termination time
if option 24 (NN) is on.

QM-1 Main Store Dump Locations (06,1X,06)
Same as F, but for Main Store and print option 9(item L).
It also takes place at termination time if option 24 (IW) is on.

Same as G, but for Local Store and print option lO(item M).
a - 1 Local Store Dump Locations (06,1X,06)

Control Store Dump Option (11)
If this option is on, the control store range specified in item F
will be dumped at times specified in item Y.

Main Store Dump Option (11)
If this option is on, the main store range specified in item G
will be dumped at times specified in item Y.

Local Store Dump Option (11)
If this option is on, the local store range specified in item H
will be dumped at times specified in item Y.

Stack Dump in Full Mode (11)
If this option is on, the selected stack items (either the entire
stack or a trace stack) will be dumped in the full format
mode (see Section 5.4.2.3.2)

Memory Dumps at Stop Time(11)
If this option is on, a control store memory dump and main store dmp

will take place at the stop time for each run.

Time Line (11)
If this option is on, the time line will be dumped as a single
line by itself.
not on, and one wishes to see the tinre line.

This option would only be used if item N is
See Section 5.4.2.3.2.

Stack Size (11)
If this option is on, the number of items in the stack will

-72-

be dumped, but not the stack itself.

V

W

DD

DD1

EE

FF

GG

HH

I1

JJ

KK

LL

Stack Dump in Abbreviated Mode (11)
If this option is on, the selected stack items (either the complete
stack or a trace stack) will be dumped in the abbreviated format
d e . See Section 5.4.2.3.2.

Insertion and Lifting of Gate Faults (11)
If this option is on, each time a gate fault is inserted or
lifted, the relevant information, namely the time, the
name of the device, and the particular action will be dumped.

Insertion and Lifting of Memory Faults (11)
If this option is on, each time a memory fault is inserted or
lifted, the relevant information will be dumped.

Partial Fault Buffer Dump
If this option is on, the first lOO(octa1) locations and the
last 27(octal) locations of the fault buffer will be dumped.

If this option is on, each time an external input is
scheduled and/or inserted, the relevant information will be dumped.

Scheduling and Insertion of External Inputs (11)

Scheduling and Generation of External Outputs (11)
If this option is on, each time an external output is
scheduled/generated, the relevant information will be dumped.

Run Numbers (11)
If this option is on, numbers are assigned sequentially, starting
at 1, to the runs in a batch, and are dumped at the beginning
of each run.

Fault File for QM-1 (11)
If this option is on, a file *qnuns.dat containing the fault list will
be produced which can be sent to the QM-1 for emulation on that
machine.

Memory Dumps at Action Scheduling Times (11)
If this option is on, a control store memory dump and main store
memory dump will take place each time an action is scheduled.

External Input Data for QM-1 (11)
If this option is turned on, then the external input list is produced
in file *qmms.dat for the QM-1, and the external input data and
address registers are produced in file *qmcs.dat for the QH-1.

External Output Data for QM-1 (11)
If this option is turned on, then the external output registers are
produced in file *qmcs.dat for the QM-1.

Abbreviated Run for QM-1 File Generation (11)

-73-

If this option is on with any of options HH, JJ, and KK turned on,
then the program will produce the output files for the QH-1 and stop
without doing any emulation. Thus this should be turned on if one
wishes to do the emulation runs on the QM-1 but not on the Vax.
the other hand, one can turn on items HH, JJ, and KK, and LL and
perform emulation on both the QM-1 and the Vax.

The start time, stop time, and time interval (in units of stacks)
at which all the selected outputs K through 26 will be produced.

On

Y Dump Option Time Window (*)

Z Names of Devices to be Traced (A20)
The names of all devices which are to be traced, i.e., chrmped when
they appear on the stack. If one or more
devices appear in this item, then the full stack will not be dumped,
but only the devices listed here (when they appear on the stack).
The names can appear in any order. If no names appear here, and
items N and V are off, no stack will be dumped; however, the sentinel
(item 21) must be present in any case. If any comnents are to be
present in the record, one should be sure to begin the conment beyond
column 20. There will be one item Z record for each device to be
traced.

See Section 5.4.2.3.2.

21 Sentinel for Trace Devices (2420)
This record signals that no more trace device names follow. This
record must always be present, whether or not there are any trace
devices listed. This record must have an asterisk in each of coltnmrs
1 through 5.

22 User-Defined Dump Specifications Part 1 (A20,1X,Il,lX,O6,1X,O6)
Items F through M allow the user to dump portions of control store,
main store, and/or local store at times specified in item Y.
advantage of using items F through M is that the program produces the
dump in a fixed format about which the user need not be concerned.
The disadvantages of using items F through M are that only one
contiguous section of control store, one section of main store, and
one section of local store can be dumped, and this is always done in
a fixed format. In order to overcome these disadvantages, one can
use items 22 and 23. These items allow the user to define what he
would like to dump and in what format he would like to see this dump.
It is possible to define up to 15 (maxupch) different Dump
Specifications.
namely items 22 and 23. Item 22 specifies what is to be dumped, and
item 23 specifies in what format the data is to be dumped. Thus it
is possible to dump up to 15 different contiguous portions of control
store, main store, and/or local store in user-defined valid Fortran
77 formats.
specifications, there should be no 22 or 23 records, but there m s t
always be one 24 record.

Record 22 contains:

The

Each dump specification consists of two records,

If the user does not wish to have any user-defined dump

1.

2. The memory-type flag (0-control store, l=main store, 2=local

The literal characters or title to be printed preceding the
d w

store

,

- !
!

- 1
I

-74-

3.
4.

The starting location to be dumped
The ending location to be dumped

23

24

25

26

AA

A A l

AA2

AA3

BB

User-defined Dump Specifications Part 2 (A80)
The second record, 23, contains the Fortran format statement
(enclosed in parentheses) in which the data which was defined in part
1 is to be dumped.

This record signals that no more user-defined dump specifications
follow.
any user-defined dump specifications.
asterisk in each of columns 1 through 5.

Sentinel for User-defined Dump Specifications (A20)

This record must always be present, whether or not there are
This record must have an

Names of Devices for which State Information will be Dumped
The header word for each device contains all the state information
for that device. The user would use item Z5 if he wishes to examine
the state(s1 of one or more particular devices at specified times
during the emulation. There should be one Z5 record for each device
for which state information is to be produced.
that it is possible to have header information of a given device
change without having the device appear on the stack (e.g., an
enabling or disabling of a tri-state).
in it; however, the sentinel, item 26 must always be present.

Sentinel for State Information Devices (A20)
This record signals that no more state information device names
follow. This record must always be present, whether or not there are
any state information devices listed. This record must have an
asterisk in each of columns 1 through 5.

If this value is zero, then items AAl through AA3 are left out.
If this value is not zero, then the group of items through
AA3 must appear once for each external input set.

It should be noted

This item may have no devices

Number of External Input Sets (*)

Name of File containing the external input list (A40)
The file named here contains the actual data to be inputted
from external sources during the run.
for a complete description of this file.

This is the number of bits that must be supplied in the ei file each
time the data is to be inserted into the network.
of bits is 32.

See Section 5.4.2.2.4.

Number of Bits in each data item (*)

The maximum number

Name of fanout device (A20)
There must be as many devices listed as the number of bits specified
in AA2 above.
the data.
bit, and the last device the least significant bit.
one device named on each AA3 record.

Each device will receive as input the bit specified in
The first device named will receive the most significant

There will be

Number of External Output Sets (*)

-7 5-

BB1

I 882

883

I BB4 i

BB5

If this value is zero, then items BB1 through BB5 are left out.
this value is not zero, then the group of items BB1 through BB5 must
appear once for each external output set.

If

Name of File to receive the output data (A40)
The file named here will be written to at the completion of the batch
run and will contain the time-tagged data for this external output
set for all runs in the batch.
See Section 5.4.2.3.3 for a complete description of this file.

This is the number of bits that will be dumped to the external output
file each time the data is requested.
leftmost bit at the address specified in BB4, and bits are dun@
rightward and from ascending locations. The largest acceptable value
for this field is 126(decimal).

Number of Bits in each data item (*)

The first bit dumped is the

Maximum number of items in the buffer (*)
This is the largest number of items this data set is expected to
generate during the entire batch run.
allocation.

It is used for storage

Control Store Address of External Output Data Register (06)
The address in control store of the first data register to be dumped
for the external output set.

Reschedule Flag, Start Time, Delta Time for External Outputs (*)

Reschedule flag: if this value is zero, then the scheduling of this
external output set is controlled by internal logic, i.e., when a
specified devices goes high, the output is produced, but otherwise
the output is not produced. If this value is one, then the emulator
does automatic rescheduling of this external output, starting at the
specified start time, and at intervals of the specified delta time,
until the end of the run.

i

Start time: The first time at which this output is to be
automatically scheduled, if reschedule flag =l (otherwise not used).

Delta time: The time increment between automatic rescheduling, if
reschedule flag4 (otherwise not used).

5.4.2.2.3 Fault List File

5.4.2.2.3.1 Contents of the File

In the fault list file, *fault.dat, the user specifies all "operations"
to be performed for the batch.
the same target machine.
time designated in the fault list for that run.
user must supply depend upon the particular operation.

of the emulator.

A batch consists of one or more "runs" for
A run begins at time 1 and continues until the stop

The time given is in units of the basic clock ticks or numbers of stacks

The parameters which the

For each run in the batch, any nurnber of operations may be

-76-

specified.
accomodated for the entire batch, and if this number is exceeded, the user
will be notified.
order. Valid operations, their corresponding op codes used in the fault
list, and the parameters required for each are listed below:

There will be a maximum number of operations that can be

Within each run, the operations must be in ascending time

Op Code

1
2
3
4
5
6
7

Operation Parameters Required -

Stop Batch
stop Run Time
Stick Gate at 0 Time, Gate Name
Stick Gate at 1 Time, Gate Name
Lift Gate Fault Time, Gate Name
Insert Fault in ROM
Lift Fault from ROM

Time, Memory Id, Word Id, Bit Position
Time, Memory Id, Word Id, Bit Position

Valid Op Codes

Figure 17

stop Run -
The user specifies the time at which the run is to terminate. There

must be one "stop run" operation as the last operation for each run.
possible that the "stop run" may be the only operation for the run.

Tt is

Stick Gate at O / l
The user may apply faults to simple gates. The faults that are

applied are "stuck at" faults. The user specifies the gate name, whether
the gate is to be stuck at 0 or 1 (by the op code) , and at what time the
gate is to be stuck.
line of the gate will remain at 0 no matter what the input values happen to
be; when a gate is stuck at 1, the output line will remain at 1 no matte1
what the input values happen to be. The gate remains stuck until a " l i f t
gate fault" is applied to the gate.

one wishes to fault a flip-flop, then the flip-flop could be modeled as a
set of gates, or a dunmry gate could be inserted whose input is the output
of the flip-flop, and the dunmy gate could be faulted.
fault a tri-state, the same is true as for flip-flops.

actually becomes effective at time T+1.
from the very beginning of a run (ml), then the time gi qefi with the op
code should be 0.

For a gate to be stuck at 0 means that the output

Only simple gates may be faulted (AND, NAND, OR, NOR, XOR, NXOR). I f

If one wishes to

When a user specifies that a gate is to be stuck at time T,. the f a d t
If one wishes t r have a gate stuck

Lift Gate Fault

When one wishes to remove a fault from a gate, he supplies the gate
name and the time at which the fault is to be lifted.
request that a fault be lifted from a gate unless a fault has previously
been inserted and not yet lifted. Again, when a user specifies that a
fault be lifted at time T, the lifting of the fault will be effective at

The user should not

-77-

time T+1. When the fault is lifted, the output line of the gate will then
again accurately reflect the values on the input lines.

fault insertions and/or lifts at the same time.
increased if necessary.

It is possible in a particular run at present, to assert up to 30 gate
This maximum can be

See Section 5.2.3.

Insert Fault in RUJS

In order to insert a fault into a EMM, the user must specify the time
at which the fault is to be inserted, the identification number of the
particular rom, the address of the word to be faulted and the bit position
of the bit to be faulted.
complementing the correct value.

Faulting a bit in a ROM is equivalent to

Lift Fault from XM

One may request that a fault which has been previously inserted into a
ROM be removed.
value currently in the specified bit position, or in other words, returning
it to its original value. Note that if one tries to lift a fault which has
not previously been inserted, then one has effectively inserted a fault,
since the existing bit is merely complemented.
a ROM fault be inserted or lifted at time T, the operation is actually
effective at time T.

Removing the fault is equivalent to complementing the

When a user specifies that

Stop Batch

This operation is unique in that it may not be specified by the user.
emulation automatically adds a "stop batch" code at the end of the fault
buffer.
operation is basically transparent to the user.

The

This Its execution causes the entire batch job to be terminated.

5.4.2.2.3.2 Structure of the File

The first record of the file is a title which will be printed in the
output file.
for run 1, followed by operations for run 2, etc.
number of operations for each run.
is one.
each run. In this "stop run" operation the user specifies at what time the
run is to terninate. Each m may thus have a different stop tinre.
possible that the "stop run" may be the only operation for the run.
every fault file must have at least two records, namely the title record and
at least one "stop run" operation. Operations for any particular run
consist of a sequence of operations which must be in ascending order by time.
The structure of the file is show below (assuming n runs in the batch):

Following the title is a list of "operations" to be executed
There is no limit on the

The minimum number of operations per run
There must be one "stop run" operation as the last operation for

It is
Thus

I

File Structure

Title Record
Operations for Run 1

-78-

Operations for Run 2

Operations for Run n

Record Structures

The number of records required for each operation is dependent on the
particular operation; however, record 1 for each operation has the same
format. The record contents and formats are:

Title Record
Format: (A40 1
Contents: The first record of the file contains a title which will be

printed at the beginning of the output file *eaut.dat
preceded by "Operations :"

Operations for Each Run

Valid operations, their corresponding op codes used in the fault list,
and the parameters required for each are listed below:

Op Code

1
2
3
4
5
6
7

Paramters Required Operation .- -

Stop Batch
stop Run Time
Stick Gate at 0 Time, Gate Name
Stick Gate at 1 Time, Gate Name
Lift Gate Fault Time, Gate Name
Insert Fault in ROM
Lift Fault from ROM

Time, Memory Id, Word Id, Bit Pos
Time, Memory Id, Word Id, Bit Pos

Record Formats

stop ~ u n (op code = 2)
Record 1: op code, time

Stick Gate at 0 (op code = 3)
Record 1: op code, time
Record 2: device name

Stick Gate at 1 (op code = 4
Record 1: op code, time
Record 2: device name

Lift Gate Fault (op code = 5
Record 1: op code, time

format(*)

format(*)
format(a20)

format(*)
format (a20)

format(*)

-79-

Record 2: device name format (a20)

Insert Fault in Rom (op code = 6)
Record 1: op code, time format (*)
Record 2: Memory Id, Word Id, Bit Position format(*)

Lift Fault from Rom (op code = 7)
Record 1: op code, time format(*)
Record 2: Memory Id, Word Id, Bit Position format(*)

Following are descriptions of the individual items in the records:

Op Code: The one-digit code for the operation to be performed (see
table above).

Time: The time at which the operation is to be performed, in units
of emulator clocks or stacks. It should be noted that for op codes
3, 4, and 5, the sticking/lifting of the gate fault doesn't become
effective until one clock after the time specified here.

Device name : the name of the device which is to be faulted or to
have the fault lifted.

Memory Id.
the emulator, beginning with 1, in the order in which they appear in
*mems.dat.

Bit 1d:The bit id is the bit position in the target machine. The
bits are numbered with bit position zero as the least significant
position.

:The memories are automatically numbered consecutively by

This number is the Memory Id.

Word 1d:The word id is the address containing the bit which is to be
faulted. The word id is the actual target machine address if the
emulator has performed the relocation to the QF-1 memory, but must be
the absolute QM-1 address if the user did the relocation mually.
See Section 5.4.1.2.3.2, items Vl...Vn for a discussion of memory
relocation.

Comments in Records:
Any record with * format can have a space after the last number and
the rest of the record can contain comments. Any record with an A
format can have comments after the last column specified for the
character string.

5.4.2.2.3.3 Sample Fault List File

Insert and Lift Gate and Memory Faults
4,5 !Run 1: stick gate named AND43 to 1 at time 5
AND43
2,40 I stop run 1 at time 40
3,12 !Run 2: stick gate named AND44 to 0 at time 12
AND44

!Title

-80-

4,12
OR62
5,50
AND44
2 ,100
6,6O
3,1000,13
7,70
3,1000,13
2,150

! stick gate named OR62 to 1 at time 12

1 lift fault from gate named AND44 at time 50

I stop run 2 at time 100
!Run 3: insert fault in rWm at time 60
!
I lift fault from ROM at time 70
I

I stop run 3 at time 150

stick bit 13 of word 1000 in memory 3

lift from bit 13 of word 1000 in memory 3

5.4.2.2.4 External Input Files

For each external input set that exists, the user must create one external
input file for which he specifies the Vax Vms file name.
files are necessary if itemla in *eopts.dat is zero.

No external input

5.4.2.2.4.1 Contents and Structure of External Input Files

If item= of file *eopts.dat is not zero, then one external input
file must be created by the user in any manner he chooses for each
external input set.
below:

The format for each such file is descriherl

The file containing the actual external inputs list consists of
one record for each insertion of an external input.
contains the time followed by the data bits to bc! inserted, in the
following format:

Each record

(bn,ilO,lx,oll)

The times for a given set must be in ascending order, and the data
bits must be right justified. The maximum number of bits to be
inputted in one data item is 32.

5.4.2.2.4.2 Sample External Input Files
E'olloWing are the entries in *eopts.dat which specify external ingut files:

4
combeil .dat
7
TS2GO1
TS2G02
TS2G03
TS2GO 5
TS2G06
TS2G07
TS2G08
combei2 .dat
1

! nexinp no. of ei lists
!file name of first ei list
!no. of bits in first list
!names of devices feeding this list

!file name of second ei list

-81-

TS2GOO
combei 3. dat
1
TSlGOO
combei4 .dat
1
TSlGOl

!file name of third ei list

!file name of fourth ei list

Following are contents of file @CMBEIl.DAT
1 000 combeil.dat bal-W2

Followinq are contents of file oowBEI2.IIRT
1 0 combei2.dat ts2gOO---bal
18 1
28 0

Following are contents of file CCYlBEI3.IIAT

1 0 combei3.dat tslgOO

Following are contents of file CCYlBEI4.DAT
1 0 combei4.dat tslgOl
40 1
61 0
180 1
201 0

5.4.2.3 Emulation Output Files

5.4.2.3.1 Text Output File

emulation program are almost completely under the control of the user. In the
run options file, *eopts.dat, he specifies what outputs he wishes to appear in
this file.
specific settings in *eopts.dat. Below is an explanation of these ten
examples :

Outpts which Appear in Every Run

Example 1:

1 Actual Date and time the run began.
2 Text which the user inserted in item A of file *iopts.dat.
3 Text which the user inserted in item A of file *eopts.dat.
4 Text which the user inserted as the first line in the file *fault.dat.
5 Emulation time at which the run completed.
6 Average stack size, minimum stack size, and maximum stack size over the

entire run.
7 Actual Date and time the run ended.

The contents of the emulation text output file(*eout.dat) created by the

See Appendix D for ten different samples of outputs produced by

o p t i d Outpts

-82-

All other outputs are optional and are controlled by the user in file
*eopts.dat.
26 in *eopts.dat.
are explanat ions for thp examples.

The optional outputs are selected by the user in items F through
See Appendix D for examples of all of these outputs. Below

-le 2:

Run Nmbers (Item GG, Print Option 40)

1 The number of the run within the batch. (the runs are automatically
numbered by the program in the order in which they occur in the
fault file.

Stack Size (Item U, Print Option 29)

L :;lack tjizc', J .e., Ltic r ~ u n h r ut devices o i l Lhr? 8 iiiient st .w k , I I I

3 Current time, in octal.
4 Stack size, in decimal.
5 Current time, in decimal.

octal.

Termination (Item W, Print Option 24)

6 Dump, in octal, of control store, local store, and main store at
Termination Time.

Exanple 3:

Cantrol Store Ixmp (Item K, Option 8)

1 Current time, in octal.
2 Current time, in decimal.
3 Address of first control store location dumped, in octal.
4 Contents, in octal, of successive control store locations,

beginning with address in 3 above.

Main Store Dunp (Item L, Option 9)

5 Current time, in octal.
6 Current time, in decimal.
7 Address of first main store location dumped, in octal.
8 Contents, in octal, of successive main store locations, beginning

with address in 7 above.

Exanple 4:

The L i n e (Item T, Option 28)

1 Current time, in octal
2 Current time, in decimal
3 The average size of the full stack as of the current time
4 The size of the smallest stack as of the current time
5 The size of the largest stack as of the current time

-83-

6 The static average fanout for the netlist,
specified netlist, the average number of devices to which a device
feeds .

7 The dynamic average number of destination devices examined for each
source device on the stack, i.e., the average fanout for the
devices which have been on the stack through the current time.

8 The dynamic average number of destination devices enqueued for each
source device on the stack, i.e., the average number of devices
whose output values have changed per each source device which has
been on the stack through the current time.

i.e., within the

-le 5:

Stack I)ump in Abbreviated Mode (Item V, Option 30)

1 Current time, in decimal.
2 Name of Device on stack.

9 3 Value on output line of device named.

Example 6':

Insertion and Lifting of Gate Faults (Item 99, Option 31)

1 Time at which fault was inserted, in octal.
2 Time at which fau l t was inserted, in decimal.
3 Value at which the output line of the gate was stuck.
4 Name of t h e device which was faulted.
5 Time at which fault was lifted, in octal.
6 Time at which fault was lifted, in decimal.
7 Name of the device whose fault was lifted.

atanple 7:

Insertion and Lifting of Wemory Faults (Item w), Option 33)

1 Time at which fault was inserted, in octal.
2 Time at which fault was inserted, in decimal.
3 Memory Id into which fault was inserted.
4 Target Address into which fault was inserted.
5 Target Bit Number into which fault was inserted.
6 Absolute QM-1 address which holds faulted word.
7
8
9
10
11
12
13
14
15
16
17
18

Contents of QM-1 address prior to faulting.
Bit position of faulted bit, in QM-1 word.
Contents of QM-1 address after faulting.
Time at which fault was lifted, in octal.
Time at which fault was lifted, in decimal.
Memory Id from which fault was lifted.
Target Address from which fault was lifted.
Target Bit Number from which fault was lifted.
Absolute QM-1 address which holds fault to be lifted.
Contents of QM-1 address prior to lifting.
Bit position of faulted bit, in QH-1 word.
Contents of QM-1 address after lifting.

-84-

-le 8: Trace Stack (Items Z and Zl)

All items are the same as for example 10, except that item 9 will read
"Trace Stack", and the only devices which will be outputted when they
are on the stack are those whose names are listed in item 2 of
*eopts.dat.

-le 9: Device State Information (Items 25 and 26)

1 Current time, in octal.
2 Current time, in decimal.
3 Device Index Number.
4 Device Name.
5 Device Header word, in octal (contains state information).
6 The QM-1 address of the header word for this device, in octal.

-le 10:

Stack I)laq? in pull Mode (Item N, Print Option 11)

7

8

9

10

11
12
13
14
15
16
17

Time of stack dump, in octal
Time of stack dump, in decimal
The average size of the full stack as of the current time
The size of the smallest stack as of the current time
The size of the largest stack as of the current time
The static average fanout for the netlist,
specified netlist, the average number of devices to which a device
feeds .
The dynamic average number of destination devices examined for each
source device on the stack, i.e., the average fanout for the
devices which have been on the stack through the current time.
The dynamic average number of destination devices enqueued for each
source device on the stack, i.e., the average number of devices
whose output values have changed per each source device which has
been on the stack through the current time.
Description of what Selection Attribute the stack has, namely a
"Complete" stack or a "Trace" stack
Sequential number representing the position of this item on the
stack
The device index number of this device, in decimal.
The QM-1 address of the header word for this device, in octal.
The device name.
The value on the output line of the device.
The header word for this device, in octal.
The header word for this device, in binary.
The descriptive comment listed for this device in the Device
Comments File.
is blank.

i.e., within the

If no comment was given for this device, this field

5.4.2.3.2 Stack Outputs

This dump has two attributes, namely the selection attribute and the fonnat
attribute.

A stack dump consists of a list of devices which are on the current stack.

The selection attribute controls which devices will be selected for

-85-

printing, and the format attribute controls what information will be printed
for each device that is selected.
the run options file *eopt.s.dat (see Section 5.4.2.2.2)

The attributes are selected by the user in

Selection Attribute:

Complete-Stack Mode:

In this d e , all devices that are currently on the stack are
printed.

This mode is used if no device names are listed in item 2, and
either item N or V is turned on.

Trace-Stack Mode:

In this mode, the user is attempting to trace the activity of
specific devices and does not wish to see all the devices which are
on the stack.
wpich he wishes to "trace", and when the stack is dumped, only those
devices which he has selected will be dumped.

This mode is used if at least one device name is listed in item 2.

He thus selects in item 2 only the specific devices

Format Attribute:

Full Mode:
In the full mode, the first line is always the Time Line which
contains the current time in octal and in decima1,the average stack
size, the minimum stack size, the maximum stack size, the average
static fanout, average dynamic fanout examined during processing of
stacks, and average dynamic fanout changing in value. Following the
time line, every selected device from the current stack is
with its position on the stack, the device identification nmber,
the header address in octal, the device name, the header contents in
octal and in binary, and the user-supplied device description (if
any) from *comm.dat.

Full mode is selected by turning on option 11 (item N).

Abbreviated Mode:
In the abbreviated format mode, no time line is printed, and each
device selected is printed in an abbreviated d e .
that has been selected, the only items printed are the current time,
the device name, and the output value of the device.

For each device

Abbreviated mode is selected by turning on option 30 (Item V).
Note:
full mode will be used.
are selected, then abbreviated mode will be used.

If neither full mode nor abbreviated mode is selected, then
If both full mode and abbreviated mode

'I

Following is a table showing the results of all combinations of input
opt ions :

-86-

Item N ItemV Item 2

0 0 no device
0 0 some device
0 1 no device
0 1 some device
1 0 no device
1 0 some device
1 1 no device
1 1 some device

Result
Selection Format
no stack
Trace Full
Complete Abbreviated
Trace Abbreviated
Complete Full
Trace Full
Complete Abbreviated
Trace Abbreviated

(See Section 5.4.2.3.1 and Appendix D for examples of stack outputs.)

5.4.2.3.3 External Output Files

For a given batch, there may be zero or more external output files
created.
5.2.5 for a discussion of setup of external outputs.
written for each external output set at the completion of each batch.

See Section 4.3.10.5 for a discussion of external outputs and Section
An output file will be

5.4.2.3.3.1 Contents and Structure of External Output Files

In *eopts.dat, the user specifies the Vax Vins name he has selected for
each external output file. For a given batch, the user-specifications for a
specific external output set are the same for each run, but the outputs
produced will probably differ from run to run due to the differences in the
fault list for each run. Within each output file in ascending time sequence
will be one entry for each time the external output action was triggered.
Within a given external output file, the first entry for run i+l will
immediately follow the last entry for run i.
the action was triggered followed by the data at that time.
entry is:

Each entry consists of the time
The format for one

From the Vax Ehulator: (I W (1007

From the OM-1 -lator (after being transferred to Vax): (1x,1007)

One could process the external output files directly in either of of these
formats; however, if one wishes to convert the QM-1 format to the Vax format,
see Section 5.4.2.5.

5.4.2.3.3.2 Sample External Output File
Following are items from *eapts.datwhich specify externdl mtpt sets:

3
combeol . dat
7
500
004003
0,1,1

!no. of external output sets
!file name for first eo set
!number of bits in each entry
!max no. of items in eo buffer
!control store address of data register
!reschedule flag,start time,delta time

-87-

combe02. dat
6
500
004004
0,1,1
combeo3. dat
14
500
004006
0,1,1

! f i l e name for second eo set

! f i l e name for third eo set

Following is external outplt file,COHBm1.DAT:
20

40000
34

40000
48

240000
62 -

24000
76

0
90

0 c ,
104

-
I

40000
118

40000

40000

40000

40000

40000

240000

24000

0

132

146

160

17 4

188

202

216

5.4.2.4 Running Emulator on Vax

Notation:

user represents the name of the user's root directory (without the
brackets).
this document, user represents Smith.

For example, i f the user's root directory is [Smith], then in

-88-

Userdata represents the directory and prefix name of the user's data
files.
[smith.data], and all input files begin with prefix "counter", i.e., they
are named counternet.dat, countermems.dat, counteriopts.dat,
countercomm.dat, countereopts.dat,and counterfault.dat, then in this case
Userdata represents [smith.dataJcounter.

For example, if the directory holding the data is named

Underlining implies a command which the user inputs to Vax VMS.

M e addition to login.com file.

Insert a command into your 1ogin.com file which sets the symbol
"demuser" to the name of your root directory (without the brackets).
example, if the name of your root directory is [Smith], then insert the
following command into your login.com file:

For

Sdemuser,: -Smi th

To Run Initialization

1. Prepare input data files.
2. $@[user .dem. runliemu Userdata

1. Prepare input data files.
2. $@[user .dem. runlemu Userdata

Ekanple :
Assumptions: Command files will reside on directory [smith.dern.run]

Data will reside on directory [sdth.data], and prefix for all data
f i les is "counter".

1. Create input data files with prefix 'kounter" on directory [dth.datal.

2. $@[smith.dem.run]iemu [smith.data]counter (Run initialization)

3. $@[smith.dem.run]emu [smith.data]counter (Run emulation)

5.4.2.5 External Outputs Postprocessing

mason for External Outputs Ccmversion

When the emulation has been performed on the Vax computer, the external
outputs file is generated with format (112/(1007)) for each external output
record.

-89-

External output files which have been produced as a result of running an
emulation on the QM-1 and which have been transferred back to the Vax are in
QM-1 format which is: (1x,1007)

One could choose to process, on the Vax, the external output file from the
QM-1, as is, and then no conversion would be necessary; however, if one
wishes the external output file from the QM-1 to be in the same format as
the external output files produced by the Vax emulator, which is:
i12/(1007), then one could use the external outputs conversion program.

It should be noted that the current form of the conversion program assumes
there are four QM-1 words outputted for each external outputs triggering;
one could modify the source code if this number is different from four.

EoQMlformat represents the directory and file name of the external output
file which was transferred from the QM-1 to the Vax after the
QM-1 emulation run.

EoVaxformatrepresents the directory and file name of the external output file
which has been converted to Vax format.

Wake addition to login.cam file:

Insert a command into your login.com file which sets the symbol
"demuser" to the name of your root directory (without the brackets).
example, if the name of your root directory is [Smith], then insert the
following connand into your login.com file:

$demuser:==Smith

For

Note: (Underlining implies a conuaand which the user inputs to Vax Vlus.1

To make changes to existing conversion Program:

$set default [u~er.dem.emulator]
Edit appropriate fortran modul e (either conveoqv or tconveoqvl)
[user .dem.emulator I
Do Fortran compiles of appropriate module(s)
$@[user.dem.run]linkconveoqv (links conversion programs)

in

Transfer external output file from (34-1 to Vax on Userdata
$@[user.dem.run]conve EoQM1 format EoVaxformat

(to convert withouysettinq of hiqh-order t-)l, or
$@[user .dem. run] tconveoqv EoQ-Mlformat EoVaxformat

(to convert with setting of high-order tine-

-90-

Example :

Assumptions: Programs will reside on directory [smith.dem.emulator],
data will reside on directory [smith.data], and prefix for all data
files is "counter".

1. Transfer external output file from QM-1 to Vax on [smith.dataJ
The external output file transferred from the QM-1 is
counterqmleo.dat, and the new file in Vax format is to be naxaed
counterVaxeo.dat:

3. $@[smi th.dem. run] conveoqv [smith.data I counterqmleo .dat
[smith.data]counterVaxeo.dat

1 During the transfer from the QM-1 to the Vax, the two high order bits of
eighteen are not transferred (i.e., only 16 bits are transferred).
these two high order bits are not needed, use conveoqv.
bit is needed, use tconveoqv.

If
If the high order

5.4.3 Emulation on QM-1

5.4.3.1 Creation of QM-1 Files:

A. Use Nova Files Utility to create the following files:
(assume * is the user-selected prefix for all the files)
*:E
*corn
*cs
*cs:s
*MT
*m: S
*MAT
*MAT: S
"MEMC
*MEMc:s
*MEMM
*MEMM: S
*Ms
*MS : S
*PAR
*PAR: s
*TcoMp

When the Diagnostic Rnulation System Tape was restored to disk, three
sets of files beginning with the prefixes "ONEC", "GFOl", and "GF02",
were created on user 6 of the disk.
prefixes, he can make use of these files and thereby not have to
create his own.
create *PAR:S and *E:S respectively.

B. Use Editor to customize *TCOMP AND *:E.

If one wishes to use any of these

In any case, ONECPAR:S and ONEC:E should be copied to

The references to all data files must be changed to contain the
appropriate prefix.

-91-

C. Use Editor to customize *PAR:S and *:E.
The following control store locations must contain the specified
values:

Location Value

147
601
602
603
605
613
614
615

I

5.4.3.2 Data Preparation

address of top of first stack) + 1
address of memory control block
number of memory control records
memory master control store address
free space address
address of main store fault block
control store address of faulting device
address of operations action data structure

A. Preparation of Data for Target Computer
(theoretically this step only need be done once)

1. Conversion and transfer of Memories file, *mems.dat.
a)On Vax Side:
1)Be sure a l l references to devices in *mems.dat have a 'D' or 'd'
in colwnn 1 instead of 'C' or 'c' (see()).
2) $@(user.dem.run]convmems Userdata

3)

4)

5) On the QM-1 side: !!COPYSN DESTFILE *MpIC:S
6)

7) On the QM-1 side: !!COPYSN DESTFILE *MEMM:S

This step produces a file *mmsq.dat which is memories file in
QM-1 format.
Use a Vax editor to split *mmsq.dat into *memc.dat and
*menun.dat, where *memc.dat is the control store part and
*memm.dat is the main store part.
Use the Vax-to-QM-1 Transfer program to transfer *memc.dat
from the Vax to the QM-1.

Use the Vax-to-QM-1 Transfer program to transfer *menan.dat
from the Vax to the QM-1.

2. Transfer of Net List and External Registers.

a) m initialization program on Vax with print option 14 and print
option 43 turned on.

This produces a file *mat.dat, which is the netlist in Qm-1
format, and a file *extrn.dat, which is the file of external
registers in QM-1 format.

1)

2) On the QM-1 side: !!COPYSN DESTFILE *MAT:S
3)

Use the Vax-to-QM-1 Transfer program to transfer *mat.dat from
the Vax to the QM-1.

Use the Vax-to-QM-1 Transfer program to transfer *extrn.dat
from the Vax to the QM-1.

-92-

4) On the QM-1 side: !!COPYSN DESTFILE *ExT:S

3. Assemble Target Data on QM-1:

Press Master Clear, Start
???LDNov
!USER6
!Ex /*wm

B. Preparation of Data for Batch Run (do this step for each batch run)

1. ~ u n emulation on Vax with the following options turned on:

Turn on print option 41 to produce fault list for QM-1.
Turn on print option 44 to produce external input
external input list for QM-1, if using external inputs.
Turn on print option 45 to produce external output registers for QH-
1.
Turn on print option 46 if do not want emulation performed on Vax.
(i.e., if only purpose of run is to produce QM-1 outputs)

This produces a file *qmms.dat. This file contains the fault list
in QM-1 format, and the external inputs list, if option 44 was
turned on.

registers and

This produces a file *qmcs.dat which contains external inputs data
registers and address registers if option 44 was turned on, and/or
external outputs data registers and address registers if option 45
was turned on.

2. Use the Vax-to-QM-1 Transfer program to transfer *qmns.dat fram the
Vax to the QM-1.

3. On the QM-1 side: !!C0PYSN DESTFILE *MS:S
4. Use the Vax-to-QM-1 Transfer program to transfer *qmcs.dat from the - -

Vax to the QM-1.

Assemble Batch Data on QM-1:

5. On the QM-1 side: !!C0PYSN DESTFILE *CS:S

6.

Press Master Clear, Start
???m
! usm-6-
!Exm

5.4.3.3 To Run Emulation on QM-1:
Press Master Clear, Start
???LD6/R*

c
-93-

5.4.3.4 To Send QM-1 External Outputs to Vax

A. On QM-1 Side:

Press Haster Clear, Start
???LDEASY
S E T X A N D TIME
! !IIATE,-
! !-3InE,mt/lcK/xx .. I I$

! !bIRectory, Search lst=06,2nd=, - 08
! !EimsmRT
! !WY-SPACE - ,BS=26 - ,ws=347777
! !7m
! ! m C - BOTODISK

Use QM-1-to-Vax Transfer program to transfer QM-1 external output file
from QM-1 to Vax.

B.

on QM-1 side:
!!EXEC - Qnlm
QM-1 To Vax PI0 TRANSFER FROM MEMORY
INTERMEDIATE PRIN'IWTS? ENTER Y OR N

on vax Side:

StqmlvFi
(type in Vax output file name when requested)

2. Convert external outputs if desired. (see Section 5.4.2.5)

5.4.4 Vax <--> Qml File Transfers

5.4.4.1 Vax to Qml Transfers

Underlined characters are those which the user types into the Operating
System.

step 1: (QM-1 side)

Mount Application Pack on QM-1 Drive 0.
Disk should be write-enabled.

Master Clear, Start
???LIDEASY
! ! D A m E m
! !TIME, xx/xx/xx
! !B
!!DIRECTORY,SEARCH - 1SW06,2NI).,08 - -

i

!

-94-

!!EX(ec) - TVAXQMl
you will then see on the screen:

! !test,entry=vaxqml,file=bbvaxqml.
vax to qml file transfer

step 2: (Vax side)

$@[uSer.dem.transfers.vaxqmlJtvqi FILENAME(where "FILENAME" is name of
the vax file to be transferred)

When transfer completes:

On Vax side, file "translog.dat" contains the transmission log.
On QM-1 side, the new file is in DESTFILE.

optional step 3: (-1 side)
(do this step only if transferred file is to be used under Nova Operating
System)

!!COPYSN DESTFILE NOVAFILE - -
(where "NOVAFILE" is the name of the Nova file)

5.4.4.2 Qml to Vax Transfers

Underlined characters are those which the user types into the Operating
System.

step 1: (-1 side)

Mount Application Pack on QM-1 Drive 0.

Master Clear, Start
???LDEASY
! ! DAmF)[x/xx
! !TIME, xxcx/xx
! !B
!!DIRECrORY,SEARCH 1SW06,2ND=,08 - -
!!EX(ec) - TQM~VAXI

you will then see on the screen:
!!test,entry=mv,file=bhnv.
qml to vax file transfer

step 2: (Vax side)

$@[user.dem.transfers.qmlvax]tqv FILENAEIE(where llFILENAME" is nam of the
Vax file to be created)

-95-

When transfer completes:

On Vax side, the new file is in "filename"
On QM-1 side, file "translog" contains transmission log.

-96-

6. Bibliography

6.1

1.

2.

3.

4 .

5.

6.

7.

8.

9.

References

Baker, R., Mangum, S., Scheper, C., A Fault Injection Experiment Using the
AIRLAB Diagnostic Emulation Facility, NASA CR-1/8390 , Research Triangle
Institute, Research Triangle, North Carolina, December, 1987.

Migneault, G. E., On The Diagnostic Emulation Technique And Its Use In The
AIRLAB, NASA TM-4027 (to be published 1988).
Nanodata Corporation, QM-1 Hardware Level Users Manual, Third Edition,
Revision 3, Buffalo, New York, July, 1983.

Nanodata Corporation, QM Micro, Version 1.3, Second Edition,
Williamsville, New Y o r m

Nanodata Corporation, Multi Micromachine Description, Revision 2,
December, 1976.

Nanodata Corporation, QM-1 Nanoassembler Programer's Reference Manual,
First Edition, February, 1980.

Nanodata Corporation, QM - NCS Operations Guide, Buffalo, New York,
October, 1981.

Naples, Charles, J., Emulation Aid System 11 (Easy 11) System Programer's
Guide, Naval Surface Weapons Center, Dah1 gren Lab0 ratory Technical Report
NSWC TR 81-98, Dahlgren, Virginia, March 1981.

Naples, Charles, J., Simpl-Q Reference Manual, Naval Surface Weapons
Center, Dahlgren Laboratory Technical Report NSWC TR 81-262, Dahlgren,
Virginia, May, 1981.

-97-

Appendix A
Additional Figures

Event, Free Space, and Action List Layouts

Control Store

Events and Free Space lists

Fl*;-

€I
.

I

< r r r r r

HEAD I I I t >

OF I ? - I I

LIST >>>>,>>,>>>
I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

HERD I

OF I

FREE I

I

I

I

SPACE >>>,>>>>>>
LIST

I F/
: I I I I I I > I t f f l

I

I 1 1 1)

I I

Action L i s t

I

'E
B (not scheduled)

<-4

,,,, Pointer to next item i n free space list Pointer to next item in event list - Pointer to next action i n action list

A - 1

I Word 1

17 16 15 14 13

word 2

Word 3

12 11 10 7 6 5 4 3

~

Word 1

Word 2

word 3

17 16 15 14 13 12 11 10

Event and Free Space Record Layouts

9 8 7 6 5

Control Store

Time a t which event is to occur

Pointer t o next event in event list (null for l a s t entry in list)

Pointer t o f i r s t action in action list to be executed a t this time

Free Space Record Layart

I Not Used I
~~~~ 

Pointer t o  next record i n  free space list (null for last entry) I 

A -  2 

-i 
I 



Action Control Block Layout 

Control Store 

A 
C 
t 
i 
O R  
n e  

C 
c o  
o r  
n d  
t 
r 
0 

J 
:7 

A 
C 
t 
i 
O R  
n e  

C 
c o  
o r  
n d  
t s  
r 
0 

< i 

A -  3 



Scheduling an Event 
Insert ~ e w  Event at H& of Event List 

Old Head of NEwEvmT 
Event L i s t  - 

New Time ~ I i r p A D o c  
<<<<<<<<<<< <<<<fzvmr LIST 

Insert New Event Between Iko Events 
HEADOF 

New Time 

I <<<<< 

Insert New Event at Tail of L i s t  
HEAD OF 
Wml! LIS&--> 

>>>> Pointer after scheduling 
- Pointer before scheduling - Pointer ivhich has not been 

changed by scheduling p=p>>>>>>>>>>m J 

A -  4 



Scheduling an Action 

Always Insert New Actian at  Head of Actian List 
Event Action Action 

>>>>> new pointer after scheduling - old pointer before scheduling, which has been replaced - pointer which has not been changed by scheduling 

A - 5  



Flip-Flop Trigger Chart 

( for domward *triggered flip-flop) 

I N P U T S  

P C  T L J K  

Internal 

Ql+ 1 

- -  1 1  t 
1 1  J 0 0  
1 1  J 0 1  
1 1  4 1 0  

1 1  J 1 1  

1 1  t 0 0  
1 1  t 0 1  
1 1  t 1 0  

1 1  t 1 1  

1 1  J - -  

- 
Ql 

(or indeterminant 

(nochange) 
1 0 

1 0 I 

( indeterminant if -1 and 
J or It changed while bl; 
no changes othenrise) 

I 

Q external value at time n 
Q external value at t h  n+l 
Q internal value at time n 
Q internal d u e  at t h e  n+l 
transition from 0 to 1 t 

4 transition from 1 to 0 

Ql 
%+l 
iQl 

iQl+l 

A - 6  
I 



- 

Fortran 
Variable 
Name 

UIN 

UINO 

UINl 

UIN2 

Fortran 
Variable 
Name 

UOVT 
UOUTl 

m 2  

uouT3 
uouT4 
WWTS 

-8 

Logical 
File 
Name 

FOR008 

FOR007 

FORO10 

FORO11 

Logical 
File 
Name 

FOR014 
FORO12 

FORO1 3 

FORO19 
FORO20 
FOR021 

FOR028 

Fortran Initialization I/O Units 

Inputs 

Vax VMS 
File Name 

*net .dat 

*conm.dat 

*mems.dat 

*iopts.dat 

outarts 

vax VMS 
File Name 

*iout .dat 
*alph . dat 

*nam.dat 

*mat.dat 
*check .dat 
*save .dat 

*extrn.dat 

Description 

the target network description(net1ist) 
in DENF format 

the conanents or descriptions to appear 
alongsode device m s  when they 
appear on the stack output 

the initial values to be resident in 
the host memory before the emlation 
begins 

the user runtine initialization parameters 

Description 

output text file from initialization 
alphabetic list of devices: 
device name, device number, 
device type, device class, 
initial output value 

template for creating *camn.dat 
device number, device number, 
device name 

entire matrix in format to go to -1 
debugging information 
all initialized data structures in 

control store externals to go to -1 
binary form 

A -  7 



Fortran Logical 
Variable File 
Name Name 

UIN2 FORO11 
UIN3 FOR015 
UIN4 FOR016 
UIN6 FORO09 

Fortran Logical 
Variable File 
Name Name 

WXPT FOR014 
uouT6 FOR026 
uovT7 FOR027 
m FOR029 

~ 

Fortran Emulation I10 Units 

Inprts 

Vax VMS 
File 
Name 

*eopts .dat 
*fault .dat 
(user name) 
*save .dat 

vax VMS 
File 
Name 

*eout .dat 
(user name) 
*Cps.dat 
*qmcs.dat 

Description 

user runtime options for emlation 
fault list 
external input lists 
all initialized data structures 

(in binary) creapd 
by initialization program \ 

- 1  

Description 

text output file from emulation 
external outputs files 
main store contents to go to -1 
control store contents to go to  -1 

-i 

A - a  



User Modifications to Fortran Module to Execute One Action 

c*********** Make changes where indicated by ''tw 

c$$$$$$ EXIACT EXECUTE ONE ACTION 
C INPUTS :GPA - PTR To ACTION TO BE EXECUTED 
C 0uTpUTS:EXECUTED ACTION 
C IF INVALID ACTICE3 CODE, PRINT ERROR & STOP 

SUBRWTINE EXIACT 
IMPLICIT 1-ER (A-Z) 

INCLUDE 'mO.FOR/list' 
INCLUDE 'COMM21.FOR/list' 
INCLUDE 'CaMiM;12.FOR/listr 
INCLUDE 'PNPARAM.FOR/list' 

LOGICAL*l CFALSE 
........................................................................ 

DATA CFALSE/. FALSE ./ 
IlATA LMCODE/'774000'0/ 

C INCLUDE 'GETCS.FOR/list' 
INCLUDE 'CLEAR.FOR/list' 

C EXECUTE ACTION 
LACbCS ( GPA) 
LACODE= ( LACT .AND. LMCODE)/DIVACT 

IF((LAcoDE.GE.ILLAC1).AND.(LACODE.LE.ILLAC2))~ To 500 !U.OF ILL. 

!ACTION CODE RIGHT JUSTIFIED 
GO +IO (10,20,30,40,50,60,70,80),LAcoDE !AIRLAB ACTIONS 

c *** Insert "IF" here checking for new action code and branch to newly 
inserted call to user-written action*** I for example: 
C IF (UCODE.W.NEWCODE)GO TO 600 
p i - + + + - -  

C 
10 

C 
20 

C 
30 

C 
40 

C 
50 

C 
60 

C 
70 

WRITE(UOUT,1OOO)gpa,LACT,LACODE 
call termrn 
STOP 
ACTION 1 - FILL BUFFER 
CALL ACT1 
GO To 250 

CALL ACT2 
GO To 250 

CALL ACT3 
GO To 250 

CALL ACT4 
GO TO 250 

CALL ACTS 
GO To 250 

ACTIW 2 - WRITE m R Y  

ACTION 3 - READ MEMORY 

ACTION 4 - DUMP -EMPTY BUFFER To DISK 

ACTION 5 - STOP RUN 

ACTION 6-EXECUTE OPERATIONS 
CALL ACT6 
GO To 250 

ACTION 7-ExTEEwAL INPUTS 
CALL ACT7 

A - 9  



User Modifications to Fortran Module to Execute One Action 

GO To 250 
C ACTION 8-MTEEwAL OUTPUTS 
80 CALL ACT8( .FALSE.) !NORMAL WRITE, MI" OF R W  HhRKER 

GO 'ID 250 

500 CALL ACTILL( LACODE) 
GO To 250 

C ACTIONS FOR UNIV. OF ILLINOIS 

C + + + + + + + + + +++++ +++ +++++ +++ * P 
C*** Insert call to new module followed by GO To 250 
C 

*** , for example: 
Also compile and link NEWSUB as described in ( ) .  

600 CALL NEWSUB 
GO TO 250 

C- ++-- 
C Do REscHEIxnINGdd 
250 IF((LACT.AND.cmASK(18)).EQ.O)THEN 

CALL pVTcS(GPA,CLEAR(LACT,CMASK(10))) 

CALL REACT 
ELSE 

END1 I? 
300 RE" 
1000 FORMAT(' INVALID ACTION - address= ',06,'word 1= ', 

X 06,' action code= ',IlO) 
END 

A - IO 



Fortran Parameters & Common Variables, Sorted by Common Label 
N a n ~  DimensioncOamrm Description 

Label - 

maxconn parameter-max no. of internal connections allowed 
maxuate Darameter-max no. of gates allowed 
xn& (4000) 
prloc (3,2) 
prsw ( 50) 
prtime (30) 
prtisw (10) 
nconnec 
nextern 
ngates 
runtitle(l0) 
title (10) 
xaddres (4000) 
xconn (10000) 
xhdr ( 4000 ) 
xhigh (4000) 
xlink (10000) 
xlow (4000) 
zptr (10000) 
xcount (4000) 
xstack (4000) 
datebuf 
timebuf 
dchigh (4000) 
dclow (4000) 
dcomen (10000) 

L 

c06 
c08 
c08 

co8 
Comml 
COXNliL 
comml 
c o w  
comml 
comml 
Conrml 
Comrnl 
c o d  
C d  
C d  
C d  
c d l  
canmitl 
c d 4  
C o d  4 
C o d  5 
C o d  5 
c o d  5 

coa 

csopact 
cspf 1 t 
endbat 
endrun 
ftitle 
infltr 
memadr ( 30 ) 
msfblk 
msnxf 1 
ngf con 
nomems 
nops 
opsize (15) 
pfltcon 
timesiz 
cseiac (21) 
cseial 
cseiar 
cseidr 
mseile 
mseili 
nexinp 
cseoac (21) 
cseoal 
cseoar 
cseodr ( 20) 

c o d 6  
c o d 6  
c o d 6  
conmil6 
c o d 6  
c o d 6  
c o d 6  
c o w 6  
comml6 
c o d 6  
c o d 6  
comml6 
c o d 6  
c o d 6  
c o d 6  
c o d 7  
conmil7 
c o d 7  
c o d 7  
comanl7 
conmil7 
c o d 7  
comml8 
comml8 

c o d 8  
conmila 

character*20-?levice names, set by getdevn 
low & high address for cs,ms,ls for output 
user print option switched, Oroff, l=on 
print window l=start,2=stop,3=delta 
laprint window flag(l=on) 
no. of connections, set by preproc 
no. of external connections, set by preproc 
no. of devices, set by initrnlneqn 
title for run, read in getparm from eopts file 
i*4-title for output,read from opts file by initrn 
qml control store address for header for device i 
full address for internal connection 
header for each device i 
index to connection list for last COM for device i 
first word of internal connector record 
index to connection list for first COM for device i 
the index of the dest device for this connection 
initial value of "count" for each device 
stack flag for device(O=not on,l=is on 1st stack) 
character*g-current date for output 
character*8-current time for output 
high index for each device, into dconunen 
low index for each device, into dconmen 
character*l-one string holding all device canments 
ptr to op action structure in cs(ca1c from read-in) 
ptr to header in cs of faulter device(read in) 
1*1 true if at end of batch(ca1c) 
1*1 true if at end of run(ca1c) 
fault list title,read by colist,used act6 & schnop 
index no. of faulter device(read in) 
memory relocation constants 
ptr to ms fault blk(read in) 
ptr to next op to be sched.,init by colist,inc in act6 
no. of gate faults this stack(ca1c) 
no. of rom and ram memories with relocation 
no. of ops in batch(ca1c) 
no. of words for corresponding op 
ptr to next fault connection(ca1c) 
no. of qml wds to hold time(read in) 
cs addr of 1st word of each ei action(read 1,calcrest) 
last possible ei action entry(calcu1ated) 
loc in cs of first ei address register(read) 
loc in cs of first ei data register(read) 
last possible ei list entry(calcu1ated) 
loc in m s  of first ei list(read) 
actual number of ei sets for this batch(read) 
cs addr of 1st word of each eo action(read 1,calcrest) 
not used 
loc in cs of first eo address register(read) 
loc in cs of data register 



Fortran Parameters & Common Variables, Sorted by Common Label 

eofile (20) 
eonwrd (20) 
eorfl (20) 
eorstr (20) 
mseobu 
mseole 
nexoup 
dmask (0:17) 
csaddr 
csexter 
cstime 
msexter 
xehigh (4000) 
xei (4000) 
xelink (4000) 
xelow (4000) 
xew ( 4000) 
mask (0:19) 
cstopa 
me* 
gnncon 
gpa 
gpe 
gpevhd 
gpf rhd 
9pmcon 
9pmaas 
gpnewa 
P- 
gsflag 
gstime 
gtime 
cs (0:20000) 
cssup 
1s (0:31) 
lssup 
ms (0:70000) 
mssup 
pcslow 
PCSUP 
plslow 
PlSUP 
P l o w  
P U P  
nt race 
xtrace (4000) 
nupcho 
u p c w  (15) 
upform (15) 
uplocl (15) 
uploc2 (15) 
uptitle (15) 

comml8 
comnl8 
c o d 8  
cornnil8 
comnl8 
c d 8  
conunl8 
comnl9 
ComR2 
C d  
Comn2 
C d  
C d  
COUd 
C d  
C d  
Canna2 
canna20 
camm21 
c d 1  
comn21 
commr21 
c d 1  
cornan21 
canna21 
c d 1  
c d 1  
conan21 
c d 1  
c d 1  
comn21 
conan21 
c d 2  
cornan22 
conan22 
cornan22 
c d 2  
conan22 
conan22 
comm22 
conan22 
conan22 
conan22 
COrmn22 
c d 4  
C o a 4  
c d 5  
cornan25 
c d 5  
C o d 5  
c d 5  
c d 5  

DescriDt ion 

char*lO-name for external output file(read) 
no. qml wrds per datum in eo action-use getparm,termrn 
byte-external output reschedule flag(l=on) 
external output start time for rescheduling 
loc in ms of first eo buffer 
not used 
no. of external output sets 
mask for bit 0,O-1,O-2, ... 0-17 
qml control store address for matrix 
qml control store address for first external register 
qml control store address for storing time for outputs 
q m l  main store address for first external register 
index to last external data structure for each device 
1-external complemented,O-not (not needed after init) 
external link word 
index to first external data structure for each device 
qml cs or ms address of external 
mask for bit 0,1,2 ... 17,mask for bits 8&9,0(not used) 
cs address of stop action 
time for new event to be scheduled 
number of action control records 
general purpose pointer to action 
general purpose pointer to event 
ptr to head of event list, init by initfe 
ptr to head of free space list, init by initfe 
pointer to action control block 
pointer to master action control register 
pointer to new action 
pointer to newly allocated event 
stop flag(l=stop) 
user-defined stop time 
current time 
qml control store 
highest cs loc to save on save file 
qml local store 
highest 1s loc to save on save file 
qml main store 
highest ms loc to save on save file 
parameter-low dimension for control store ( 0 )  
parameter-high dimension for control store (20000) 
parameter-low dimension for local store (0) 
parameter-high dimension for local store (37) 
parameter-low dimension for main store ( 0 )  
parameter-high dimension for main store (70000) 
no. of devices to be traced 
byte-trace flag(0dont print output changes,l=do) 
no. of user print choices(autput formats) 
user print choice memory type(O-cs,l=ms,2-ls) 
character*80-user print choice format incl. ( )  
user print choice low mem address to output 
user print choice high mem address to output 
character*20-user print choice title to output 

;- 

A - 12 



Fortran Parameters & Common 
Name DimensionCommon 

Laber 
Variables, Sorted by Common Label 
Description 

zfullw (10000) c o d 6  

xheadt (500) C o d 7  
nchange c o d 8  
xchange (4000) c o d 8  
xchid (1000) c o d 8  
checkon cofian29 
sw (20) c o d 9  
swl c o d 9  
sw2-sw20 cornan29 
xebit (4000) corn3 
xecsms (4000) c o w  
xereg (4000) com3 
divear conan30 
emask (1:18) cam31 

nheads C o d 7  

adf and Corn4 
adf cn Corn4 
adfen Corn4 
asf an Corn4 
nstack (2) Corn4 
S Corn4 
savg Corn4 
sbar Corn4 
SmaX Corn4 
smin Corn4 
stack (2,500) corn4 
ingnin Corn5 
initfl comms 
iprclr Corn5 
ntri comm!j 
triang (4000) c o d  
xeval (4000) c o d  
xffval (4000) corn5 
head (4000) corn5 
xival (4000) corn5 
xnudef (4000) corm5 
xpval (4000) COid 
dconnt (10000) corn6 
dinnum (10000) corn6 
dinval (10000) corn6 
drflag (10000) corn6 
dxnext (10000) corn6 
xclass (4000) corn8 
xdis (4000) comm8 
xr (4000) comm8 
xtype (4000) con& 
xu (4000) corn8 
xvalue (4000) c o d  

byte 
no. of devices to have headers printed 
indexes of devices to have headers printed 
no. of headers that changed this stack 
byte- 0 if x didn't change this stack, 1 if did 
index nos. of the headers that changed this stack 
equivalence(swl,sw(l),checkon) 

logical-true if prsw(3) and prsw(4) on(check hdrs) 
logical-switches(not used) 
bit no. for external (not needed after init) 
type of external(0=cs,l=ms,2=ls)(not needed afterinit) 
external register no. (cs,msls) (not needed afterinit) 
divisor for emulator address reg. to right justify 
masks for bits 17,17-16,17-15 ... 17-0 
real-denom,avg dyn fanout,calc in pstack,used 
real-numerator'avg dyn fanout change,i.e., enequeued 
real-numerator,avg dyn fanout examined 
real-average static fanout, set by getdevn 
number of items in stack i 
current stack number (1 or 2) 
real-average number of items on stack 
non-current stack number (1 if s-2, 2 if s-1) 
maximum number of items on stack 
minimum number of items on stack 
current & new stacks holding indices of stack devices 
value to assign to output for devices with no inputs 
initialization flag (O=user,l-computer) 
print-clear convention flag: O(1-benign) l(1-active) 
number of devices with defined output values 
indices of all devices with output value defined 
external value for device 
"PCTUK" values for flip-flop 
pts to 1st entry in conn list(this device is destin.) 
internal value for device 
no. of undefined inputs for this device 
predefined output value for device 
connection type for internal connection 
index no. of the source device for connectioni 
value on input line coming into device 
reversal flag for connection 
ptr to next item in connection list w.same dest device 
device class(gate,flipflop,or tri-state) 
disconnected output value for tri-states 
R value 
device type(fiipflop,and,nand,or,etc.\ 
U value 
outuut value for device 

ClOOO parameter-constant of 100 ( octal 
ClOO parameter-constant of lO(octa1) 
clff parameter-device class for ff (2) 
clgate parameter-device class for gate (1) 

A - 13 



Fortran Parameters & Common Variables, Sorted by Common Label 
Name DhnsionCommon Description 

Label - 

cl ts 
cnqbi t 
cnull 
connhi 

cpdval 
csentl 
ctyc 
ctya 
ctyen 
ctygts 
ctyj 
ctyk 
ctyl 
CtYP 
CtYt 
divact 
dumtime 
eiasize 

I eilsize 
fbsize 
illacl 
illac2 
illinl 
illoutl 
inf in 
maxgf 1 
maxmem 
maxnei 
maxupch 
mbi tO 
nmlbi t 
nmword 
mull 
mu12 
mulnbi 
nrUlllW0 
nthead 
numvops 
owtype 
oplifg 
oplifm 
OPtype 
opsbat 
opsrun 
opstgo 
opstgl 
opstm 
tema71 
tema81 ' t e a 1  
tyand 

COMlO 

parameter-device class for tri-state (3) 
parameter-number of bits in qml  word (18) 
parameter-(0) 
parameter-highest valud value for gate types(7) 
parameter-lowest valid value for gates types(1) 
parameter-user output value for computer calculated(9) 
parameter-sentinel of -1 for action 8 
parameter-connection type to flip-flop input c (2) 
parameter-connection type to flip-flop input d (7) 
parameter-connection type to enable line of tri-state 
parameter-connection type to regular gate (0) 
parameter-connection type to flip-flop input j (5) 
parameter-connection type to flip-flop input k (6) 
parameter-connection type to flip-flop input 1 (4) 
parameter-connection type to flip-flop input p (1) 
parameter-connection type to flip-flop input t (3) 
parameter-divisor to righ-justify action code in action(2048) 
parameter-dunany time to insert into stop action 
parameter-max size in cs fo all ei actions(1000 0 )  
parameter-max size in ms for all ei lists 
parameter-no. of qml words in rmj fault buffer 
parameter-constant for u. of Ill. lowest action code(50) 
parameter-constant for u. of Ill. highest action code(52) 
parameter-input unit for045-for U. of Illinois use only 
parameter-output unit for040-for U. of Illinois use only 
paramete~--infinity(2147483647=max no. for i*4) 
parameter-max no. of gate faults per single time(30) 
parameter-max. no. of target memries(30) 
parameter-max no. ei sets (20) 
parameter-maximum no. of user print choices (output formats) 
parameter-mask for rightmost bit 0 (1) 
parameter-mask for no. leftover bits in action 
parameter-mask f. #qml wds/targer wd in 1st wd action('340'0) 
parameter-(17) 
parameter-(1) 
parameter-divisor to right-justify mlbit (1) 
parameter-divisor to right-justify narword (32) 
parameter-max no. of devices which can have headers printed 
parameter-number of valid op codes(8) 
parameter-gate fault op type(1) 
parameter-op code for lift gate fault(5) 
parameter-op code for lift memory fault(7) 
parameter-memory fault op type(2) 
parameter-op code for stop batch(1) 
parameter-op code for stop run(2) 
parameter-op code for stick gate at O(3) 
parameter-op code for stick gate at l(4) 
parameter-op code for fault memory(6) 
parameter-mask template for action 7, word l('034000'0) 
parameter-template, action 8, word 1, no rescheduling 
parameter-template, action 8, word 1, resched on 
parameter-device type for and gate (1) 

1 

A - 14 



Fortran Parameters & Common Variables, Sorted by Common Label 
Name DimenSionCcmwn 

Label 

tyf f 
tynand 
tynor 
tynot 
tynxor 
tyor 
tyxor 
uin 
uinO 
uinl 
uinlO 
uin2 
uin3 
uin4 
uin5 
uin6 
uin7 
uin8 
uin9 
uout 
uouto 
uoutl 
uoutlO 
uout2 
uout3 
uout4 
uout5 
uout6 
uout7 
uout8 
uout9 
vophigh 
voplow 

Descriptiim 

parameter-device type for ff (0) 
parameter-device type for nand gate (2) 
parameter-device type for nor gate (4) 
parameter-device type for not gate (5) 
parameter-device type for mor gate (7) 
parameter-device type for or gate (3) 
parameter-device type for xor gate (6) 
parameter-input unit for008-matrix(bdxhd2s.dat) 
parameter-input unit for007-device conanents(bdxcarmn.dat) 
parameter-input unit for010-target memories(Wxmems.dat) 
parameter-input unit for025- 
parameter-input unit for0ll-user options(bdxopts.dat) 
parameter-input unit for015- 
parameter-input unit for016- 
parameter-input unit for017- 
parameter-input unit for009- 
parameter-input unit for022- 
parameter-input unit for023- 
parameter-input unit for024- 
parameter-output unit forOl4-output file(bdxout.dat) 
parameter-output unit for018- 
parameter-output unit for012-alpha device list(bdsalph.dat) 
parameter-output unit for030- 
parameter-output unit for013-device name listihdxnam-dat) 
parameter-output unit forOl9-matrix for qml(bdxmat.dat) 
parameter-output unit for020-binary checkingfile(bdxcheck.dat) 
parameter-output unit for021- 
parameter-output unit for026- 
parameter-output unit for027- 
parameter-output unit for028- 
parameter-output unit for029- 
parameter-highest valid user op code(7) 
parameter-lowest valid user op code(1) 

A - 15 



Fortran Parameters & Common Variables, Sorted by Variable Name 
Name Dh?nsionColmnr#1 Description 

Label - 

adfand 
adf cn 
adf en 
asfan 
ClOOO 
ClOO 
che ckon 
clf f 
clgate 
clts 
mask (0:19) 
cnqbi t 
cnull 
connhi 

cpdval 
cs (0:20000) 
csaddr 
cseiac (21) 
cseial 
cseiar 
cseidr 
csentl 
cseoac (21) 
cseoal 
cseoar 
cseodr ( 20 ) 
csexter 
csopact 
cspflt 
cssup 
cstime 
cstopa 
ctyc 
CtYd 
ctyen 
ctygts 
ctyj 
ctyk 
ctyl 
c tYP 
ctyt 
datebuf 
dchigh ( 4000 ) 
dclar (4000) 
dcomen (10000) 
dconnt (10000) 
dinnum (~0000) 
dinval (10000) 
divact 
divear 
dmask (0:17) 

COMlO 

corn4 
comrn4 
comrn4 real-numerator,avg dyn fanout examined 
c m 4  real-average static fanout 
parameter-constant of lOO(octa1) 
parameter-constant of lO(octa1) 
c o d 9  equivalence(swl,sw(l),checkon) 
parameter-device class for ff (2) 
parameter-device class for gate (1) 
parameter-device class for tri-state (3) 
c o d 0  mask for bit 0,1,2 ... 17,mask for b i t s  8&9,0(not used) 
parameter-number of bits in qml word (18) 
parameter-( 0 )  
parameter-highest valud value for gate types(7) 
parameter-lowest valid value for gates types(1) 
parameter-user output value for computer calculated(9) 
c o d 2  qml control store 
c d  qml control store address for matrix 
c o d 7  cs addr of 1st word of each ei action(read 1,calcrest) 
c o d 7  last possible ei action entry(calcu1ated) 
c o d 7  loc in cs of first ei address register(read) 
comnl7 loc in cs of first ei data register(read) 
parameter-sentinel of -1 for action 8 
c d 8  cs addr of 1st word of each eo action(read 1,calcrest) 
c o d 8  not used 
conrml8 loc in cs of first eo address register(read1 
c o d 8  loc in cs of data register 
c o d  qml control store address for first external register 
c o d 6  ptr to op action structure in cs(ca1c from read-in) 
c o d 6  ptr to header in cs of faulter device(read in) 
c o d 2  highest cs loc to save on save file 
c o d  qml control store address for storing time for outputs 
c o d 1  cs address of stop action 
parameter-connection type to flip-flop input c (2) 
parameter-connection type to flip-flop input d ( 7 )  
parameter-connection type to enable line of tri-state 
parameter-connection type to regular gate ( 0 )  
parameter-connection type to flip-flop input j (5) 
parameter-connection type to flipflop input k (6) 
parameter-connection type to flip-flop input 1 (4) 
parameter-connection type to flipflop input p (1) 
parameter-connection type to flipflop input t ( 3 )  
c d 4  character*g-current date for output 
c o d 5  high index for each device, into dcomnen 
c o d 5  low index for each device, into dcomnen 
conunl5 character*l-one string holding all device comnents 
corn6 connection type for internal connection 
corn6 index no. of the source device for connectioni 
corn6 value on input line coming into device 
parameter-divisor to righ-justify action code in action(2048) 
corn30 divisor for emulator address reg. to right justify 
c o d 9  mask for bit 0,O-1,O-2, ... 0-17 

real-denom,avg dyn fanout,calc in pstack 
real-numerator,avg dyn fanout change,i.e., enequeued 

A - 16 



Fortran Parameters & Common 
Name DimensionCcmmrm 

Label - 

drflag (10000) 
dumtime 
dxnext (10000) 
eiasize 
ei 1 size 
emask (1:18) 
endbat 
endrun 
eofile (20) 
eonwrd (20) 
eorfl (20) 
eorstr (20) 
fbsize 
ftitle 

gnmcon 
gpa 
gpe 
gpevhd 
gpf rhd 
gpmcon 
QperaMs 
gpnewa 
gpnewe 
gsf lag 
gstime 
gtime 
illacl 
illac2 
illinl 
illoutl 
inf in 
infltr 
ingnin 
initfl 
iprclr 
1s (0:31) 
lssup 

maxgate 
maxgf 1 
maxmem 
maxnei 
maxupch 
mbi tO 
memadr ( 30) 
nmlbi t 
mnword 
ms (0:70000) 
mseile 
mseili 
mseobu 

IMXCOM 

Variables, Sorted by Variable Name 
DescriDtian 

corn6 reversal flag for connection 
parameter-dumy time to insert into stop action 
comm6 ptr to next item in connection list w.same dest device 
parameter-max size in cs fo all ei actions(1000 0 )  
parameter-max size in m s  for all ei lists 
comm31 masks for bits 17,17-16,17-15 ... 17-0 
c o d 6  1*1 true if at end of batch(ca1c) 
c d 6  1*1 true if at end of run(ca1c) 
c o d 8  char*lO-name for external output file(read) 
c o d 8  no. qml wrds per datum in eo action-use getparm,termrn 
c o d 8  byte-external output reschedule flag(l=on'* 
c o d 8  external output start time for rescheduling 
parameter-no. of qml words in ms fault buffer 
comml6 
coxfan21 
conan21 
comm2l 
conan21 
comm21 
comm21 
comm21 
connn21 
comm21 
C d 1  
comm21 
c d 1  
conan21 

fault list title,read by colist,used act6 c schnop 
time for new event to be scheduled 
number of action control records 
general purpose pointer to action 
general purpose pointer to event 
ptr to head of event list, init by initfe 
ptr to head of free space list, init by initfe 
pointer to action control block 
pointer to master action control register 
pointer to new action 
pointer to newly allocated event 
stop flag(l=stop) 
user-defined stop time 
current time 

parameter-constant for U. of Ill. lowest action code(50) 
parameter-constant for U. of Ill. highest action code(52) 
parameter-input unit for045-for U. of Illinois use only 
parameter-output unit for040-for U. of Illinois use only 
parameter-infinity(2147483647smax no. for i*4) 
c o d 6  index no. of faulter device(read in) 
corn5 value to assign to output for devices with no inputs 
corn5 initialization flag (0-user,l=computer) 
corn5 print-clear convention flag: O(l=benign) l(l=active) 
corm22 qml local store 
c o d 2  highest 1s loc to save on save file 

parameter-max no. of internal connections allowed 
parameter-max no. of gates allowed 

parameter-max no. of gate faults per single time(30) 
parameter-max. no. of target memories(30) 
parameter-max no. ei sets (20) 
parameter-maximum no. of user print choices (output formats) 
parameter-mask for rightmost bit 0 (1) 
c d 6  memory relocation constants 
parameter-mask for no. leftover bits in action 
parameter-mask f. #qml wds/targer wd in 1st wd action('340'0) 
comm22 qml main store 
C O d 7  last possible ei list entry(calculated1 
c o d 7  loc in ms of first ei list(read) 
c o d 8  loc in ms of first eo buffer 

A - 17 



Fortran Parameters & Common Variables, Sorted by Variable Name 
Name Dimension Camman Description 

Label 

mseole 
msexter 
msfblk 
msnxf 1 
mssup 
mull 
mu12 
mulnbi 
mUlnW0 
nchange 
nconnec 
nexinp 
nexoup 
nextern 
ngates 
ngf con 
nheads 
nomems 
nops 
nstack (2) 
nthead 
ntrace 
ntri 
numvops 
nupcho 
owtype 
opl i f g 
oplifm 
owtype 
opsbat 
opsize (15) 
opsrun 
opstgo 
opstgl 
opstm 
pcslow 
PCSUP 
pfltcon 
plslow 
PlSUP 
pmslow 
P U P  
prloc (3,2) 
prsw (50) 
prtime (30) 
prtisw (10) 
runtitle(10) 

savg 
sbar 

smin 

S 

smax 

comml8 not used 
COW qml main store address for first external register 
comml6 ptr to ms fault blk(read in) 
cormil6 ptr to next op to be sched.,init by colist,inc in act6 
comm22 highest ms loc to save on save file 
parameter4 17 
parameter-(1) 
parameter-divisor to right-justify mnlbit (1) 
parameter-divisor to right-justify narword (32) 
c d 8  no. of headers that changed this stack 
comml no. of connections, set by preproc 
comml7 actual number of ei sets for this batch(read) 
conmil8 no. of external output sets 
conmil no. of external connections, set by preproc 
comml no. of devices, set by initrmneqn 
comml6 no. of gate faults this stack(ca1c) 
comm27 no. of devices to have headers printed 
c o w 6  no. of rom and ram memories with relocation 
comml6 no. of ops in batch(ca1c) 
corn4 number of items in stack i 
parameter-max no. of devices which can have headers printed 
comm24 no. of devices to be traced 
c m 5  number of devices with defined output values 
parameter-number of valid op codes(8) 
comm25 no. of user print choices(output formats) 
parameter-gate fault op type(1) 
parameter-op code for lift gate fault(5) 

comm22 
comm22 
comml6 
connn22 
comm22 
comm22 
comm22 
c08 
c08 
c08 
c08 
comml 
Corn4 
Corn4 
corn4 
corn4 
Corn4 

parameter-op code for lift &mry fault(7) 
parameter-memory fault op type(2) 
parameter-op code for stop batch(1) 
comml6 no. of words for corresponding op 
parameter-op code for stop run(2) 
parameter-op code for stick gate at O(3) 
parameter-op code for stick gate at l(4) 
parameter-op code for fault memory(6) 

parameter-low dimension for control store (0) 
parameter-high dimension for control store (20000 1 
ptr to next fault connection(calc1 
$rameter-low dimension for local. store (0) 
parameter-high dimension for local store (37) 
parameter-low dimension for main store ( 0 )  
parameter-high dimension for main store (70000) 
low & high address for cs,ms,ls for output 
user print option switched, O=off, l=on 
print window l=start,2=stop,3=delta 
l=print window flag(l=on) 
title for run, read in getparm from eopts file 
current stack number (1 or 2) 
real-average number of items on stack 
non-current stack number (1 if s=2, 2 if s=1) 
maximum number of items on stack 
minimum number of items on stack 

A - 18 



Fortran Parameters & Common Variables, Sorted bv Variable Name 
Descriptik 

stack (2,500) corn4 current & new stacks holding indices of stack devices 
sw (20) 
swl 
sw2-sw2 0 
tema71 
tern81 
temb81 
timebuf 
timesiz 
title (10) 
triang (4000) 
tyand 
tyf f 
tynand 
tynor 
tynot 
tynxor 
tyor 
tyxor 
uin 
uinO 
uinl 
uinlO 
uin2 
uin3 
uin4 
uin5 
uin6 
uin7 
uin8 
uin9 
uout 
uouto 
uoutl 
uoutlO 
uout2 
uout3 
uout4 
uout5 
uout6 
uout7 
uout8 
uout9 
upcsms (15) 
upform (15) 
uplocl (15) 
uploc2 (15) 
uptitle (15) 
vophigh 

xaddres (4000) 
xchange (4000) 

voplar 

c o d 9  
c o d 9  logical-true if prsw( 3 ) 4 )  and prsw( on( check hdrs) 
c o d 9  logical-switches(not used) 
parameter-mask template for action 7, word l('034000'0) 
parameter-template, action 8, word 1, no rescheduling 
parameter-template, action 8, word 1, resched on 
comml4 character*8-current time for output 
connnl6 no. of qml wds to hold time(read in) 
comml 
comm5 
parameter-device type for and gate (1) 
parameter-device type for ff (0) 
parameter-device type for nand gate (2) 
parameter-device type for nor gate (4) 
parameter-device type for not gate (5) 
parameter-device type for mor gate (7) 
parameter-device type for or gate (3) 
parameter-device type for xor gate (6) 
parameter-input unit for008-matrix(bdxhd2s.dat) 
parameter-input unit for007-device comments(bdxcomm.dat) 
parameter-input unit for010-target memories(bdxmems.dat) 
parameter-input unit for025- 
parameter-input unit for0ll-user options(bdxopts.dat; 
parameter-input unit for015- 
parameter-input unit for016- 
parameter-input unit for017- 
parameter-input unit for009- 
parameter-input unit for022- 
parameter-input unit for023- 
parameter-input unit for024- 
parameter-output unit for014-output file(bdxout.dat, 
parameter-output unit for018- 
parameter-output unit for012-alpha device list(bdsalph.dat) 
parameter-output unit for030- 
parameter-output unit for013-device name list(bdxnam.dat) 
parameter-output unit forOl9-matrix for qml(bdxmat.dat) 
parameter-output unit for020-binary checkingfile(bdxcheck dat) 
parameter-output unit for021- 
parameter-output unit for026- 
parameter-output unit for027- 
parameter-output unit for028- 
parameter-output unit for029- 
c o d 5  user print choice memory type(O=cs,l=ms,2=ls) 
C01t~d5 character*80-user print choice format incl. ( !  
c o d 5  user print choice low mem address to output 
c o d 5  user print choice high mem address to output 
C o d 5  character*20-user print choice title to output 
parameter-highest valid user op code(7) 
parameter-lowest valid user op code(1) 
comml qml control store address for header for device i 
c o d 8  byte- 0 if x didn't change this stack, 1 if did 

i*4-title for output,read from opts file by initrn 
indices of all devices with output value defined 

A - 19 



Fortran Parameters & Common Variables, Sorted bv Variable Name 
Name DimensionCamnon 

K i s i S r  

xchid (1000 
xclass 

xcount 
xdis 
xebi t 
xecsms 
xehigh 
xei 
xelink 
xelow 
xereg 
xeval 
xew 
xf fval 
xhdr 
xhead 
xheadt 
xhigh 
xival 
xlink 
xlow 

xnudef 
xpval 
xr 
xstack 
xtrace 
xtype 

xvalue 
zfullw 
zptr 

X C O M  

xname 

xu 

4000 
10000 
4000) 
4000 ) 
4000) 
4000) 
4000) 
4000 ) 
4000 ) 
4000) 
4000) 
4000) 
4000) 
4000 ) 
4000) 
4000 ) 
500 ) 
4000) 
4000 1 

c o d 8  
corn8 
c o d  
conanll 
c o d  
comm3 
Corn3 
c o d  
c o d  
comm2 
c o d  
corn3 
corn5 
c o d  
comm5 
conrml 
comm5 
c o d 7  
cofimil 
conrm5 

10006) c o d  
4000) c o d  
(4000) c06 
(4000) conan5 
(4000) corn5 
(4000) c o d  
(4000) conunll 
(4000) c o d 4  
(4000) corn8 
(4000) corn8 
(4000) c o d  
(10000) c o d 6  
(10000) conmil 

Descriptiim 

index nos. of the headers that changed this stack 
device class(gate,flip-flop,or tri-state) 
full address for internal connection 
initial value of "count" for each device 
disconnected output value for tri-states 
bit no. for external (not needed after init) 
type of external(0=cs,l=ms,2=ls)(not needed afterinit) 
index to last external data structure for each device 
l=external complemented,O=not (not needed after init) 
external link word 
index to first external data structure for each device 
external register no. (cs,msls) (not needed afterinit) 
external value for device 
qml cs or ms address of external 
l'PCTL,JK'l values for flip-flop 
header for each device i 
pts to 1st entry in corm list(this device is destin.) 
indexes of devices to have headers printed 
index to connection list for last COM for device i 
internal value for device 
first word of internal connector record 
index to connection list for first COM for device i 
character*20-device names, set by getdevn 
no. of undefined inputs for this device 
predefined output value for device 
R value 
stack flag for device(O=not on,l-is on 1st stack) 
byte-trace flag(04ont print output changes,l=do) 
device type(fiipflop,and,nand,or,etc.) 
U value 
output value for device 

the index of the dest device for this connection 
byte 

A - 20 



Flip-Flop Decision Table for QM-1 Version 

ti X 

X 

X 
X 
X 
X 
X 

- 

c X X 

X 
X 

X 
X 

X 
X 
X 
X 

- 
X 
X 
X 
X - 

X 

I 
Note: Any case not in table represents no action taken, and branch to "Skip 

For input columns, blanks are "don't care" conditions. 
Check whether device should be enqueued, and continue processing. 
Skip enqueueing check, and just continue processing. 

A - 21 



- File Operating 
Name Svstem - 

Naiii ie BPzilator: 

BBEMPlVl : S 
BBEMPlVl 
BBBNBIN 
BBEMP2V1: S 
BBEMP2Vl 
BBEMP3V1: S 
BBEMP3V1 
MSNA": S 
BBNANOE : S 
MS":B 
MS":M 

Microcode Driver: 

BBDSNOVA: S 
BBDSEASY: S 
BBGDNOVA: S 
BBGDEASY : S 
BBGD: B 
BBDRNOVA: S 
BBDREASY: S 
BBDR: B 
BBA1NOVA: S 
BBAlEASY: S 
B M : B  
BMEASY: S 
BBA2:B 
BBESNOVA: S 
BBESEASY: S 
BBES : B 
BBEMNOVA: S 
BBEMEASY: S 
BBEM:B 
BBEENWA: S 
BBEE : B 
BBUTNOVA: S 
BBUTEASY: S 
BBUT : B 
BBIONOVA: S 
BBIOEASY: S 
BBI0:B 
BBECOMPILE 
BBECONVERT 

BBCGD 
BBCDR 
BBCAl 
BBCA2 
BBCES 
BBCEM 
BBCEE 
BBCUT 
BBCIO 

Nova 
Nova 
Nova 
Nova 
Nova 
Nova 
Nova 
Nova 

Nova 
Nova 

QSY 

Nova 

Nova 

Nova 
Nova 

Nova 
Nova 

Nova 

Nova 
Nova 
Easy 
Nova 
Nova 
Easy 
Nova 
Nova 
Nova 
Nova 
Easy 
Nova 
Nova 

Nova 
Nova 

QSY 

Easy 

Easy 

Nova 
Nova 
Nova 
Nova 
Nova 
Nova 
Nova 
Nova 
Nova 

QM-1 Emulator Files 
File File Description 
BE 

Source Emulator Nanocode, Part 1 
Binary 11 

Definition 
Source Emulator Nanocode, Part 2 
Binary 11 

Source Emulator Nanocode, Part 3 
Binary 11 

Source Main Store Extend. Address. Nanmrd 
Source 
Binary 11 

11 

11 

Mapped 11 

Source Symbol Definitions 
Source 11 

Source Global Data Definitions 
Source 
Binary 11 

Source Driver Module 
Source 
Binary 11 

Source Action Modules Set 1 
Source 
Binary 
Source 
Binary 11 

Source Subroutine Modules Set 1 
Source 
Binary 11 

Source Subroutine Modules Set 2 
Source 
Binary 11 

Source Subroutine Modules Set 3 
Binary 11 

Source Utility Modules for Driver 
Source 11 

Binary 11 

Source 1/0 Modules for Driver 
Source 
Binary 11 

Execute Assemble all Driver Microcode Programs 
Execute Convert all Driver Source Microcode 

Programs from Easy to Nova 
Execute Assemble BBGDN0VA:S 
Execute Assemble BBDRNOVA: S 
Execute Assemble BBAlNOVA:S 
Execute Assemble BBA2NOVA:S 
Execute Assemble BBESNOVA:S 
Execute Assemble BBEMN0VA:S 
Execute Assemble BBEENOVA: S 
Execute Assemble BBUTNOVA: S 
Execute Assemble BBION0VA:S 

11 

11 

11 

11 

11 

11 

11 

11 

A - 22 



EOTODISK 

TvAxQMl 

TQMlVAXI 

*:E 

R* 

WXMDISK: S 

WXMD1SK:B 

Operating 
System 

Easy 

Nova 

Nova 

b S Y  

MSY 

QM-1 Utility Files 

File 
ZEi 
Execute 

Execute 

Execute 

Execute 

Loadable 

Source 

Binary 

File DescriDtion 

Write External Outputs from 

Transfer Disk File from Vax 

Test VAXQEil BBVAXQMl 
Transfer Disk File from QMl 

Test MV BBMV 
Generate Executable File 

for Target Machine * 
Executable file for Target 
Machine * 

Write External Outputs from 

Memory to Disk 

to QM1 

to vax 

Memory to Disk 
11 

A - 23 



QM-1 Files for Transfers With Vax 

BBGETPIO 

BBFWITIO 
BBRACKNAK 
BBCACKNAK 
BBVAXIN 
BBREST 

BBVAXOUT 

BBSACKNAK 

I BBIVAXIN 

I BBACWRTRAN 
BBRDATAF' 

BBIVAX(XPT 
I BBMITARUN 

BBACCQMPAR 
BBIPUTPIO I 

I BBIGETPIO 
I BBRINTF 

I BBMVMAIN: S 
BBMV 
BBMVSEND:S 
TQMlvAxI 

BBWAXQMl 
BBWQM1 
BBWRDATAF 
BBWRTRANF 
BBEXITRUN 
TvAxQMl 

Operating File File Description 
ZiE System 

Vax to O M  and ONl to vax 

Source 

Source 
Source 
Source 
Source 
Source 

Source 

Source 

QM1 to vax 

Get next record from pi0 interface 
i.e., wait till ready, and 
determine no. of records read 
Put next record out over pi0 interface 
Receive acknowledge/no ack. code 
Calculate whether ack or nak code recvd 
Get next record from pio(1awest level) 
Miscellaneous low-level modules for 
interface 
Put next record to pio(1ouest level) 
from a character array 
Send ack/nak code over pi0 

Source 

Source 
Source 
Source 
Source 

Source 
Source 

Source 

Source 

Source 

Get next record from pio(1owest level) 

Write activity on transaction log file 
Read next record from QMl disk file 
Close disk files and exit the run 
Put next record to pio(1owest level) 

Compare record sent to record received 
Put next record out over pio, from 
an integer array 
Get next record from pi0 interface 

(as an integer array) 
Read next integer value f r m  QHl 
disk file 

Main Procrram 

(as an integer array) 

from an integer array 

Executable Main Pro&ara 
Source Send record from QMl to Vax 
Execute Transfer disk file from Qml to Vax 

vax to m 
Source Main Program 
Executable Main Program 
Source 
Source 
Source Close disk files and exit the m 
Execute 

Write record received to QMl disk file 
Write activity on transaction log file 

Transfer disk file from Vax to Q M ~  

i .  
i 

A - 24 



E! 
A - 25 



I 

4 4  4 

I 
4 

2 
rl 4 4 . 4 rl 

d 
r )  

d 
rl 

rl 

I 
0 

II 
0 

I 
0 

I 
0 

i 

al 
rl 

2 
3 0 

a, 
rl 

2 
3 0 

0 
4J 

a, 
3 
rl 

g 
b 

id tu 

II > > w 5  s U 

0- a, am tu 

A - 26 



81 
u) 4 l-l 

5 5  
u) 
Lc a 
U 
u) 
.d 
P 

u) 
U 

aJ 
U x aJ u) 

(v 
. 

I I  kJ 
4- kJ 

Oi 

A - 27 



W 

A 

tn 

V 

3 

I3 

0 

z 

- 
A 

m 

tn 

W 

ps 

a 

n 

4 

la 

la 

3 

Tu 

V 

tn 

tn 

W 

ps 

n 

n 

4 

d 

la 

3 

Tu 

A - 28 



Lc 
0 

0 4  0 4 

Q, 8 u Q, 
L) il 0 

w 8 
-4 

o a  

.d 
? 
6 

U 
I 8  
N 

0 4 0 4 0 4  

8 
2 
-4 
U 

-4 
U 

8 8 
VI 
0 

-4 
U 

2 
in 
38 

w m  ov) 

SQ 8 
C n 

-4 U 

A - 2 9  
VI c 



u 8 
d x Lc 

0 
u u  % F i  
3 3  
0 0  

m 

3 5  v ) m  
J J U  ." ." 

4 4  
0 0  o o o u a l  
c c c c c a l  u u c , u u u 5  

u u c , u u *  8 

" El d M z.5 

." ." -4 .rl ." 

.rl 88"i ." -" .rl ." 

s ssssk3 
u u u u u c  
a l a l a l a l a l  

0 0 0 0 0 ~ a l  u u u u u r ,  

I I 
4 0 

I n  
0 4  

r( 

F 
r( 
Ir 

.4 
P 

In 
U 

so OG 

A - 30 
3 



A 

m 

m 

w 

m 

CJ 

CJ 

4 

la 

la 

3 

crc 

V 

A - 31 



w o  
-4 JJ 

Q , Q ,  u u  

Q, 
Lc 
0 
UQ, 
Ink 
0 

r l U  

J J E  
8 "  
!j -5 
I1 I1 
O d  

E 
0 
0 
c 

n 1(\ ' 
0 4  0 4 0 4  

Lc Lc 

.i p 
8 W  

In 
u) 
Q, 

$i d 

a, 
d 
rl 
lu 

.. 
0, 
4J 
In i! Q, 

e, 
X 
Q, 

.rl 

P fz 
Lc 
0 
W 

B P 
a, 
(0 
rl r4 

rl 

JJ 

U 

2 
8 

Lc 
0 
W 

rl 

.rl 
E 

22 I b  

W 
0 

a b i i  
d + J  

X r l m  

.rl 
u) 
Lc 
Q, 

H 
8 

JJ 

tn 8 
rl 

2% 
co 
.d 

u) 
In P 
rl 

E! 

Lc 
Q, 
uLc 

A - 32 



al 

c 

A 
I 

* 
c, a 
0 
>, 
Q 
J 
u) 
!?! a 

2 
ti 

c, 
0 

I- 
d 

& 

2 
E 
8 

s 

rl 

& 

U 

0 
& 

3 a 
ul 
al 
Lc 
Lc 

8 

8 

C 
0 
.d 
& 

0 
& 

Lc al 
& c B 

\o 
rl 

& 

2 
E 
8 

E" 

a 

8 
8 

rl 

& 
C 

0 
& 

3 
ul a8 
b 
Lc 

.d 
& u a 
0 
& 

Lc 
al 
& 
C 
0 
pc 

.r( 

0 

& 

2 
E 
8 

F 

a 
c 
8 
8 

rl 

& 

U 

0 
& 

3 
ul 

Lc 

-4 
& u a 
0 
& 

Lc al 
& 
C 

2 

0 
Q 
P 
c, 

I- 
d 

& 

2 
Lc 
0 w 
& 

a 
& 
rl 

8 

A - 33 



0 

- 
r( 

N 

- 

- 

W 
4 

- 

t- 
4 

A 

L3 

w 

VI 

3 

0 

z 

V 

u 

JJ 
alJJW 
P-rc rl 

JJ 
A 

JJ 
al 
P J J  rl 
L C . 4  I 
JJ 
tunc 

JJ 

gJJ 2 p :: 
JJ 
al 

a a  
JJ 

E% c 

A 

P 

W 

VI 

3 

El 

0 

z 

V 

JJ 

%5 r( bn a 
JJ 

I 

1 

I .  

A - 34 



I 

al 

a i3 0 

V 

c 

0 

.d 

U 

q ' 

. 

2 2 2 '  '2 
P P P  P 

A - 35 



JJ 

I I -  
i 
I 

I 

! 

I 

i 
j .  

A - 36 



A - 37 



c 
v) 

II 
a 
U 
0 
0 

C 
0 

* 

.I c 

2 
a 
3i 
0 

Q 

V 

w 

A 

U 

ep 

4 him 

E s ' &  
E .r( 

n n n n n  
d m u a  

I '  

i 

I 
I 

I -  

A - 38 



8 
-4 
JJ 

v) 

JJ 
Q 

% 
2 Q, 

K 
Q, 

B 

8 
0 
JJ 

-4 
JJ 
U 
Q 
JJ x 

0 c, 

E 

ki 
JJ c B 

A - 39 



Lc 
Q, 
JJ 
m 
.d 
0 E 
m m 
Q, 

3 4 

w 
0 
m 
m 
Q, a s 
E 

E 
Eo 

0 
JJ 
m 
rl 

JJ 

V 

A - 40 



8 
-4 
U 

VI 

3 
U m 

% 
3 

B 

8 

e, 

a, x 
a, 

0 
U 

.d 
U u 
U 

E 
0 
U 

Lc 
a, 
JJ c 

m 

4 

2 

Lc 
a, 
U 
tn 

-$ Lc 

a 
t! 

tn 
tn 
a, 

W 
0 
tn 
tn 
a, 

e 

E: 

0 
U tn 
v-4 

3 V 

- 
0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 - 

s 
s 
U 

8 
a, 
? a, 

W ~ I I H I I  
4 m v a  

A - 4 1  



000 m 

8 
o o o o m  

00 
4 QINOI 

4 
Fcn 

0 QIO 
4 

0 mmu,  

O N N O  04 & I A N 0  I-- I-- 

l -  

A - 42 



8 8  
4 4  

L .- 
n 

n 

0 

4 .- -. 
LL 

n 

n 
E 

0 

4 
.I 

CY 
w- 
0 

0 4  0 

O d O d d O  

2 2  

m m 
3 

a 

A - 43 



Appendix B 
m e  Initidlizatiar Text atpt P i l e  



E 

VI 

H 

la 

VI 

2 

0 

H 

E 

v 
W 

2 

z 
0 

v 

U 
U 
C O  
c a  
E A  
O B  
v 

ORIGINAL PAGE IS 
OE POOR QUALITY 

v) 

h v )  

i m  
I d  
I V  
1 
I 
I 
I 
I 
I 

W w w w W w w w w w Y  
Ec+EEl3kk€lEkc+ 
4 4 4 4 4 4 4  4 4 4  
0 0 0 0 0 0 0 4 0 0 0  

w w  
HE 
4 4  
0 0  

0 0  
e 2  
4 4  

0 0  

ui 
* W  
P E  
t l a  
31 

NL. 
NN 
NN 
NN 

0 0 1  
4 

0 4  

D O  

w w  
c+c+ 
4 4  
0 0  

B Z  
4 4  

oz 
W C  
E =  
b l t  
3 3  
4 0  
* N  
NN 
NN 
NN 

m o  
r( 

I 

l a  
I .  

E o z  u i o z 0  
aoozoozuiouioui2 
o z o X o o X o # o 4  
0 0 0 0 0 0 0 0 0 0 0  

I A  
C C E  

U 
u u s  

a 
U 

LI .r( 1 
0 

a 3  

03 
m Q 

0 
0 U 
rl a u  r ( 0 0 0 0 0 0 0 0 0  

d l  
r( l a  
rl u e ,  

d l  
W a 0  r: u 
E 

P 
0)  d o *  e o *  0 0 0  
C c c  c c  

I- 4 e, * e  * *  
W w 3  c e  * *  

I @ a  e *  * e  
z Q U  * e  I *  
3 0 1  * e  e *  
5 b o  * e  * e  
I 01 * C  C C  

H 

W 
n 
O r: *. u b 0 0 0 0 0 0 0 0 0 0  

w a  la 
E m  E 
4 u 
0 0  PI 

C 
a 

LI a o )  
0 c s  

u r (  
c LI e a  
* o  u 3  

X X z -  W 
o e ,  
H O  
k C  r( r l o o o o o o o o o  
4 a 
N E VI C C  
H U W L I J  0 
la 4 3 C d  rl 
4 3 4 u a  
H 4 c 3  
H U > H  
H r n  
z 4 J b A  I1 
H E 3 1  

a h 1  VI 
& O H 1  W 
0 0 3 1  v 
E 0 1  H 
4 u  I 3 
l a . r ( O 0  W 
3 P W  0 
Z l Z U  
W O H  0 

a 4 rn oz W 
v .. w E 

d d 0 0 0 0 0 0 0 0 0  

0 8  
C 
E 

m n a  
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
Y 

h 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
C 

0 

4 

2 
0 
U 
..I 
> 
n 
e 

# 

U 

a 
U 

0 

a 

a 

VI 
n 

d 
a 

v 

0 

0 0 0 0 0  0 0  

W Y  
hc+ 
4 4  
0 0  

ui 
& O  
O X  

t-a 
K W  

t - W  

w w w w w  
l3EEEc+ 
4 4 4 4 4  
0 0 0 0 0  

u r n a  
31 
E 

a u  

E ui 
oozuiozo 
Z O O O X  

4 3 

H 
k 

c) 

X 
h 
H 
5 
VI 
W 
V 
H 
3 
W 
n 

a z H 
(* 
W 
0 

L. 
0 

0: 
W 

t 
3 
e 

m 

VI 
0 
2 

N 
N 
N 

0 
4 

.4 
X 

.4 

N 
X 

N 

m 
X 

m 

Q 
X 

Q 

v) 
X 

v) 

ro 
X 

\o 

W 
X 

01 
ro 

.. 
0 
oz 
4 
E Y 

B - 1  



0 0  0 0  0 0  
0 
e 
N 

0 0  0 0  0 0  

OF POOR QUALIrY 
0 0  0 0  0 0  

I- 
v) 
N 

0 0  0 0  0 0  

0 0  0 0  0 0  
0 
In 
N 

0 0  0 0  0 0  

O N  0 0  00 
m 
v) 
N 

o a o o o o o o o a o o o o n o o o o o o a o o o o a a n  
~ ~ Z Z Z ~ Z Z Z Z Z Z Z z z ~ Z ~ Z Z z z z z z z z z z  
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4  

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

0 0  0 0  0 0  
0 - 

ct 
4 
JJ 

.u 
8 0  .* - 
JJLI  

0 
UTI -. 

X 
VI 

a- 
4 

U 
0 0  

0 
4 -  

la 
w l a  

0 
X U  
a 
a 
4 

w n  
I 

V I  
I 

H I  
I 

P I  
I 

W I  
I 

0 1  
I 
I 
I 
I 

d l  . 
4 .  

u a  
H a  

4 z 
CI 

> 
a-  

2 - 4  
0 4  

W I J J  
1 0  
I O  
I -  
I #  
I 
I -  
1 - 4  

l a  
I 4 
I V  
I .  la 
I -  

4 4  

w a  

H 

i a  

Y t  

o o o o r ~ o r r d  
o o o o l - l - o r - r ~  
rrrrrrrrrr- 
c t m m m m m m m m m  
r - m m m m m m m m m  
r 

0 0  0 0  0 0  

0 0  

IO0 
I 
I 
I 

R 
1 
0 0 0  

m 

e 
Ll 
0 
U 
In 
r( 
a 0 0  
0 
0 
bl 

I 
I 
I 
IO0 

0 0  

0 0  

m 
m 
e o 0  

V 
V 
4 

U N  

a a a a a a a a a a a a a a a a a a a a a a a a a a a a a  
w w w w w w w w w w w w w w w w w w w w w w w w w w w w w  
h C I h h ~ C I h h C I C I h ~ C I ~ h h C I h C I h h h h h h ~ ~ h h  
c l c l c l c l c l c l c l ~ c l c l c l c l c l c l c l ~ c l ~ ~ c l c l ~ c l c l c l c l c l c l ~  
33333333333333333333333333333 
4 4 4 4 4 4 k 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 ~  
& & k & & L L L & L & a ~ L L L k L a k & & & & L L ~ ~ &  
N N N N N N N N N N N N N N N N N N N N N N N N N N N N N  
N N N N N N N N N N N N N N N N N N N N N N N N N N N N N  
N N N N N N N N N N N N N N N N N N N N N N N N N N N N N  

m m m m m m m m m m m m m m m m m m ~ m m m m m m m m m m  

0 0  0 0  

I 
I 
I O 0  
I 
a 
m 
a 
a 
a 0 0  
1, 

0 
JJ 
VI 

-4 
0 
LI 

o r e o e m r m c t o  
O O d N N m m O I n v )  
000000000d 
0 0 0 0 0 0 0 0 0 0  
NNNNNNNNNN 

0 0  
I 
I 
I 
I 
a 
B 
3 0 0  
0 

LI 
0 
U 
v) 

c o o  
. I 4  
4 
X 
I 
I 
I 
IO0 

JJOO 
C 
0 
U & 

W #  
W E  
clE 
33 
40 
IhN 
N N  

d N W l W v ) \ D r 0 3 N N  
X X X X X X X X N N  

I 
I 
I 
I O 0  

0 0  0 0  

0 0  0 0  

I 
I 
e 0 0  
LION 
add 
a 
4 

8 - 2  



Appendix C 
-le Netlist P i l e  



> F P T S l  F O O  
F P T S l F O O  

> F P T S l F O l  
F P T S  1 F O  1 
F P T S  1 F O  1 

> F P T S l F O 2  
F P T S l F O 2  

> F P T S l  PO 3 
F P T S l F 0 3  
F P T S l F 0 3  

> F P T S l F 0 4  
F P T S l  P O  4 
F P T S l  FO 4 

> F P T S l F O 5  
F P T S I F O S  
F P T S l  FO 5 

> F P T S  1 F O  6 
F P T S  1 PO 6 

> F P T S  1 P O  7 
F P T S l F O 7  

> F P T S  2FO 0 
F P T S  2FO 0 
F P T S  2FO 0 
F P T S 2 F O O  

> F P T S 2 F O 1  
F P T S 2 F O l  
F P T S 2 F O l  
F P T S  2 F O  1 

> F P T S  2 F O  2 
F P T S 2 F O 2  
F P T S 2 F O  2 
F P T S  2FO 2 

> F P T S  2 F 0 3  
F P T S  2 F O  3 
F P T S 2 F 0 3  
F P T S 2 F 0 3  

> F P T S  2 F 0 4 
F P T S  2 F 0 4 
F P T S  2FO 4 
F P T S 2 F O 4  

> F P T S  2 1 0  5 
F P T S 2 F O  5 
F P T S 2 F O 5  
F P T S Z F 0 5  

> F P T S 2 F 0 6  
F P T S 2 F 0 6  
F P T S Z F O C  
F P T S  2 F O  6 

> F P T S 2 F 0 7  
F P T S  2FO 7 
F P T S 2 F 0 7  
F P T S  2 P O  7 

> F P T S 2 F O 8  

0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

Sample Netlist File 

C L A S S =  
Z N A M E o  
C L A S S =  
Z N A M E =  
Z N A M E s  
C L A S S =  
Z N A M E -  
C L A S S =  
Z N A M E s  
2 N A M E =  
C L A S S =  
Z N A M E =  
Z N A M E =  
C L A S S =  
?.NAME= 

Z N A M E =  
C L A S S =  
2 N A M E =  
C L A S S =  
Z N A M E =  
C L A S S =  
Z N A M E =  
Z N A M E =  
Z N A M E =  
C L A S S =  
Z N A M E =  
Z N A M E =  
Z N A M E =  
C L A S S =  
Z N A M E r  
Z N A M E m  
Z N A M E =  
C L A S S =  
Z N A M E =  
Z N A M E =  
Z N A M E =  
C L A S S =  
ZNAME.: 
Z N A M E =  
Z N A M E =  
C L A S S =  
Z N A M E =  
Z N A M E =  
Z N A M E =  
C L A S S =  
Z N A M E =  
2 N A M E =  
Z N A M E =  
C L A S S =  
Z N A M E =  
2 N A M E -  
!?,NAME= 
C L A S S =  

1 T Y P E  = 
T S l G 2 O  

1 T Y P E  = 
T S l G O 3  
T S l G 0 6  

1 T Y P E  = 
T S l G O 2  

1 T Y P E  = 
T S 2 G 4 3  
T S l G 2 O  

1 T Y P E  = 
T S 2 G 4  5 
T S l G 2 O  

1 T Y P E  = 

T S Z G 0 4  
T S l F O O  

1 T Y P E  = 
T S I G 2 0  

1 T Y P E  = 
T S l G 2 O  

1 T Y P E  = 
T S 2 G 0 9  
T S Z G l O  
T S 2 G l 1  

1 T Y P E  = 
T S 2 G 1 4  
T S 2 G l O  
T S 2 G 1 2  

1 T Y P E  = 
T S 2 G 1 3  
T S 2 G 0 9  
T S 2 G l 2  

1 T Y P E  = 
T S 2 G 1 4  
T S 2 G 1 3  
T S Z G l l  

1 T Y P E  = 
T S 2 G 1 9  
T S 2 G 1 8  
T S 2 G 1 7  

1 T Y P E  = 
T S 2 G 2 2  
T S 2 G 2 O  
T S 2 G l 8  

1 T Y P E  = 
T S 2 G 2 l  
T S 2 G 2 O  
T S 2 G 1 7  

1 T Y P E  = 

T S 2 G 2 2  
T S 2 G Z l  
T S 2 G 1 9  

1 T Y P E  = 

5 V A L U E -  

5 V A L U E -  

5 V A L U E =  

5 V A L U E =  

5 V A L U E =  

5 V A L U E =  

5 V A L U E =  

5 V A L U E =  

5 V A L U E =  

5 V A L U E =  

5 V A L U E =  

5 V A L U E =  

5 V A L U E =  

5 V A L U E =  

5 V A L U E =  

5 V A L U E =  

5 V A L U E =  

9 N I C O N =  
R E V E R E  

9 N I C O N =  
R E V E R -  
R E V E R =  

9 N I C O N =  
R E V E R =  

9 N I C O N r  
R E V E R =  
R E V E R =  

9 N I C O N n  
R E V E R =  
R E V E R =  

9 N I C O N =  
R E V E R =  
R E V E R =  

9 N I C O N =  
R E V E R S  

9 N I C O N =  
R E V E R S  

9 N I C O N =  
R E V E R -  
R E V E R =  
R E V E R =  

9 N I C O N r  
R E V E R S  
R E V E R S  
R E V E R S  

9 NICON.; 
R E V E R S  
R E V E R S  
R E V E R S  

9 N I  C O N =  
R E V E R =  
R E V E R =  
R E V E R =  

9 N I C O N =  
R E V E R =  
R E V E R =  
R E V E R =  

9 N I C O N =  
R E V E R =  
R E V E R =  
R E V E R =  

9 N I C O N =  
R E V E R =  
R E V E R =  
R E V E R r  

9 N I C O N =  
R E V E R E  
R E V E R =  
R E V E R -  

9 N I C O N I  

1 N E C O N =  
0 C O N N T =  
2 N E C O N =  
0 C O N N T =  
0 C O N N T =  
1 N E C O N =  
0 C O N N T I  
2 N E C O N =  
1 C O N N T =  
0 C O N N T =  
2 N E C O N =  
1 C O N N T =  
0 C O N N T =  
2 N E C O N =  
1 C O N N T =  
0 C O N N T I  
1 N E C O N o  
0 C O N N T =  
1 N E C O N -  
0 C O N N T =  
3 N E C O N s  
0 CONNT= 
0 C O N N T =  
0 C O N N T =  
3 NECON3: 
0 C O N N T =  
0 C O N N T =  
0 C O N N T =  
3 N E C O N =  
0 C O N N T z  
0 C O N N T L  
0 CONNTI 
3 N E C O N =  
0 C O N N T m  
0 C O N N T =  
0 CONNT= 
3 N E C O N n  
0 C O N N T P  
0 O O N N T a  
0 C O N N T =  
3 R E C O N =  
0 C O N N T =  
0 C O N N T x  
0 C O N N T =  
3 N E C O N o  
0 C O N N T =  
0 C O N N T =  
0 C O R N T I  
3 N E C O N =  
0 CONNT- 
0 C O N N T n  
0 C O N N T =  
1 N E C O N n  

0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 

0 
0 
0 

0 
- 3  
0 
0 
0 
0 
0 

0 

0 
0 
0 
0 
0 

0 
0 

0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 

0 

0 
0 
0 
0 
0 

0 
0 
0 

0 
0 
0 
0 

c - 1  



F P T S Z F O B  
> F P T S  2 F 0  9 
F 1’1’ S 2 F 0 3 

> F P T S 2 F 1 0  
F P T S Z F l O  

> T S  1 FO 0 
T S l F O O  
T S l F O O  
T S l F O O  
T S l F O O  
T S l F O O  

> T S  1 FO 1 
T S l F O l  
T S l F O l  
T S l F O l  
T S l F O l  

> T S l F O 2  
T S l F O 2  
T S l F O 2  
T S 1 F O 2  
T S l F O 2  

> T S I F O 3  
T S I F 0 3  
T S l F 0 3  
T S 1 F 0 3  
T S l F 0 3  

> T S 1 F 0 4  
T S 1 F O 4  
T S l F O 4  
T S 1 F 0 4  
T S l F 0 4  

> T S  1FO 5 
T S l F 0 5  
T S l F 0 5  
T S l F 0 5  
T S l F O 5  

> T S l F 0 6  
T S l F 0 6  
T S l F 0 6  
T S l F 0 6  
T S l F 0 6  
T S l F O 6  

> T S l F O 7  
T S l F 0 7  
T S l F O 7  
T S l F 0 7  
T S l F O 7  
T S l F O 7  

> T S  l G O O  
T S l G O O  
T S l G O O  

> T S l G O 1  
T S l G O l  
T S l G O l  

> T S l G O 2  

0 
0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 
0 

0 
0 
0 

0 
0 

0 

0 

0 
0 

0 

0 

0 
0 

0 

0 
0 

0 

0 

0 
0 

0 
0 

0 

0 

0 

0 
0 

0 
0 
0 

0 
0 

0 
0 
0 

0 

0 

0 

Z N A M E =  
C I, A S S = 
Z N A M E -  
C L A S S =  
Z N A M E =  
C L A S S =  
F F V A L =  
R 

Z N A M E =  
C S M S F =  
C S M S F =  
C L A S S =  
F F V A L =  
R - 
Z N A M E t  
C S M S F =  
C L A S S =  
F F V A L =  
R 

Z N A M E =  
C S M S F r  
C L A S S =  
F F V A L =  
R - 
Z N A M E =  
C S M S F =  
C L A S S =  
F F V A L =  
R 
Z N A M E =  
C S M S F =  
C L A S S =  
F F V A L =  
R 
Z N A M E =  
C S M S F =  
C L A S S =  
F F V A L =  
R - 
Z N A M E =  
C S M S F =  
C S M S F =  
C L A S S =  
F F V A L r  
R 
Z N A M E r  
C S M S F =  
C S M S F =  
C L A S S =  
Z N A M E =  
C S M S F =  
C L A S S =  
Z N A M E =  
C S M S F =  
C L A S S =  

- 

- 

- 

- 

- 

- - 

- 

- - 

T S 2 G 4 4  
1 T Y P E  = 5 

T S Z G 4 4  ’% 

1 T Y P E  = 5 
T S 2 G 4 4  

2 T Y P E  = 0 
1 2  
o u  = o  

F P T S l  FO 0 
0 R E G N O =  4 
0 R E G N O =  6 
2 T Y P E  = 0 

7 2  
o u  = O  

F P T S l  F O 1  
0 R E G N O =  4 
2 T Y P E  = 0 

7 2  
o u  = o  

F P T S  1FO 2 
0 R E G N O =  5 
2 T Y P E  = 0 

7 2  
o u  = o  

F P T S  1 PO 3 
0 R E G N O =  5 
2 T Y P E  = 0 

7 2  
o u  = o  

F P T S  1 PO 4 
0 R E G N O =  5 
2 T Y P E  = 0 

1 2  
o u  = o  

F P T S l  PO 5 
0 R E G N O =  5 

2 T Y P E  = 0 
7 2  
0 u = o  

F P T S l  F06 
0 R E G N O =  5 
0 R E G N O =  6 

2 T Y P E  = 0 
7 2  
o u  = o  

F P T S l F O 7  
0 R E G N O =  5 
0 R E G N O =  6 
1 T Y P E  = 3 

T S l F O O  
0 R E G N O =  4 
1 T Y P E  = 3 

T S l G O 2  
0 R E G N O =  4 
1 T Y P E  = 1 

R E V E R =  
NI C O N =  
R E V E R =  
N I C O N =  
R E V E R -  
N I C O N =  

C O N N T =  
N E C O N =  
C O N N T =  
N E C O N =  
C O N N T =  
N E C O N =  

V A L U E  = 

V A L U E =  

V A L U E =  

R E V E R =  
R E V E R =  
R E V E R =  
N I C O N =  

C O N N T =  0 
B I T N O =  
B I T N O =  
V A L U E =  

1 2  
2 
9 N E C O N -  1 

R E V E R =  
R E V E R =  
N I C O N =  

C O N N T S  

N E C O N =  
B I T N O =  
V A L U E =  

11 
1 

R E V E R =  
R E V E R =  
N I C O N =  

C O N N T -  

N E C O N =  

0 

1 
B I T N O =  
V A L U E =  

1 7  
9 

R E V E R m  
R E V E R =  
N I C O N =  

C O N N T =  

N E C O N =  

0 

1 
B I T N O =  
V A L U E =  

1 6  
9 

R E V E R =  
R E V E R S  
N I C O N =  

C O N N T -  

N E C O N -  

0 

1 
B I T N O =  
V A L U E =  

1 5  
9 

R E V E R =  
R E V E R =  
N I  C O N =  

1 
0 
1 

C O N N T =  

N E C O N =  

0 

2 

B I T N O =  
V A L U E =  

1 4  
1 

0 R E V E R =  
R E V E R S  
R E V E R =  
N I C O N -  

C O N N T =  
1 3  
1 
1 

B I T N O =  
B I T N O =  
V A L U E =  N E C O N =  2 

R E V E R =  
R E V E R =  
R E V E R =  
N I C O N =  
R E V E R E  
R E V E R -  
N I C O N =  
R E V E R =  
R E V E R E  
N I C O N =  

1 
0 
0 
1 
0 
0 
1 
0 
0 
1 

C O N N T =  0 
B I T N O =  
BITNO.: 
V A L U E =  

1 2  
0 
9 N E C O N =  

C O N N T =  
1 
7 

B I T N O =  
V A L U E =  

1 7  
9 N E C O N =  

C O N N T =  
1 
0 

B I T N O =  
V A L U E =  

16 
9 N E C O N -  0 

c - 2  



T S l G O 2  
> T S l G 0 3  
T S l G 0 3  

> T S l G 0 4  
T S l G O 4  

> T S  1GO 5 
T S l G O S  

> T S l G 0 6  
T S l G 0 6  
T S l G 0 6  
T S l G 0 6  
T S l G 0 6  
T S l G 0 6  
T S l G 0 6  
T S l G 0 6  

> T S 1 6 0 7  
T S l G O 7  

> T S  1 G 0 8  
T S l G 0 8  

> T S l G 0 9  
T S l G 0 9  

> T S 1  G 1 0  
T S l G l O  

> T S l G 1 1  
T S l G l l  

> T S l G l Z  
T S l G 1 2  

> T S l G 1 3  
T S l G 1 3  
T S 1 G 1 3  
T S l G 1 3  
T S 1 G 1 3  
T S I G 1 3  
T S l G l 3  
T S l G 1 3  
T S 1 G 1 3  
T S l G 1 3  

> T S l G I I  
T S l G l 4  
T S l G l 4  

> T S l G 1 5  
T S l G 1 5  

> T S l G 1 6  
T S l G l 6  

> TS 1 G 1 7  
T S l G 1 7  
T S l G 1 7  

> T S  1 G 1 8  
T S 1 G 1 8  

> T S l G 1 9  
T S 1 G 1 9  

> T S l G 2 O  
T S l G 2 O  

> T S l G 2 1  
T S l G 2 l  

0 
0 

0 

0 
0 
0 
0 

0 
0 

0 
0 

0 

0 
0 

0 
0 
0 
0 
0 
0 
0 

0 

0 
0 
0 
0 
0 

0 

0 
0 

0 
0 
0 
0 
0 
0 
0 
0 

0 

0 
0 

0 

0 

0 
0 
0 
0 

0 
0 
0 

0 
0 
0 
0 

0 

Z N A M E =  
C L A S S =  
Z N A M E =  
C L A S S =  
Z N A M E =  
C L A S S =  
Z N A M E =  
C L A S S =  
Z N A M E =  
Z N A H E =  
Z N A M E -  
Z N A M E =  
Z N A M E E  
Z N A M E r  
C S M S F S  
C L A S S =  
Z N A M E s  
C L A S S =  
Z N A H E r  
CLASS.; 
Z N A M E s  
C L A S S =  
Z N A M E t  
C L A S S -  
Z N A M E =  
C L A S S =  
Z N A M E =  
C L A S S =  
Z N A M E =  
Z N A M E =  
Z N A M E =  
Z N A M E =  
Z N A M E =  
Z N A M E -  
Z N A M E -  
Z N A M E =  
Z N A M E -  
C L ; . S S =  

Z N A M E =  
C S M S F -  
C L A S S =  
Z N A M E =  
C L A S S -  
Z N A M E =  
C L A S S =  
Z N A M E =  
C S M S F =  
C L A S S =  
?,NAME= 
C L A S S -  
Z N A M E =  
C L A S S =  
Z N A M E =  
C L A S S =  
Z N A M E -  

T S l F O l  
1 T Y P E . =  

T S l G O 4  
1 T Y P E  = 

T S l G O S  
1 T Y P E  = 

T S l G 0 6  
1 T Y P E  = 

T S 1 1 0 7  
T S l F O 6  
T S l F O 5  
T S l F O 4  
T S l F 0 3  
T S l F O 2  

0 R E G N O =  
1 T Y P E  = 

T S l G O 8  
1 T Y P E  = 

T S l G 0 9  
1 T Y P E  = 

T S l G l O  
1 T Y P E  = 

T S l G l l  
1 T Y P E  = 

T S l G l 2  
1 T Y P E  = 

T S l G 1 3  
1 T Y P E  = 

T S l G 0 7  
T S l F O l  
T S l F O 7  
T S l F 0 6  
T S l F 0 5  
T S l F O 4  
T S 1 F O 3  
T S l F 0 2  
T S l G 2 1  

1 T Y P E  = 
T S l F O 2  

0 R E G N O =  
1 T Y P E  = 

T S l F 0 3  
1 T Y P E  = 

T S l F O 4  
1 T Y P E  = 

T S l F 0 5  
0 R E G N O =  
1 T Y P E  = 

T S l F O 6  
1 T Y P E  = 

T S 1 F O 7  
1 T Y P E  = 

T S l G 2 O  
1 T Y P E  = 

T S l G 2 2  

5 V A L U E =  

5 V A L U E =  

5 V A L U E =  

1 V A L U E -  

4 B I T N O =  
5 V A L U E =  

5 V A L U E =  

5 V A L U E =  

5 V A L U E =  

5 V A L U E -  

5 V A L U E =  

5 V A L U E =  

3 V A L U E =  

4 B I T N O =  
3 V A L U E =  

3 V A L U E =  

3 V A L U E =  

4 E I T N O -  
3 V A L U E =  

3 V A L U E =  

3 V A L U E =  

5 V A L U E =  

R E V E R =  
9 N I C O N =  

R E V E R =  
9 U I C O N =  

R E V E R =  
9 N I C O N =  

R E V E R =  
9 N I C O N =  

R E V E R =  
R E V E R S  
R E V E R E  
R E V E R S  
R E V E R S  
R E V E R S  

1 5  R E V E R =  
1 N I C O N =  

R E V E R S  
9 N I C O N =  

R E V E R S  
9 N I C O N I  

R E V E R S  
9 N I C O N =  

R E V E R S  
9 U I C O N a  

R E V E R S  
9 U I C O N =  

R E V E R =  
9 N I C O N =  

R E V E R =  
R E V E R =  
R E V E R =  
R E V E R i  
R E V E R -  
R E V E R =  
R E V E R =  
R E V E R =  
R E V E R =  

1 N I C O N =  

R E V E R =  
14 
0 

0 

0 

1 3  
1 

1 

9 

9 

R E V E R =  
N I C O N =  
R E V E R =  
N I C O N =  
R E V E R =  
N I C O N =  
R E V E R =  
R E V E R =  
N I C O N =  
R E V E R =  
N I C O N -  
R E V E R =  
N I C O N E  
R E V E R =  
N I C O N =  
R E V E R =  

0 C O U N T =  
1 N E C O N E  
0 C O N N T =  
1 U E C O U r  
0 C O N N T =  
1 N E C O N =  
0 C O U N T =  
6 N E C O N =  
0 C O N N T =  
0 C O N N T =  
0 C O N N T =  
0 C O N N T n  
0 C O N N T =  
0 C O U N T =  
0 
1 U E C O U =  
0 C O N U T =  
1 NEC0N.r 
0 C O U N T =  
1 N E C O N -  
0 C O N N T -  
1 U E C O N I  
0 C O N N T I  
1 N E C O N =  
0 C O N N T =  
1 U E C O N =  
0 COUNT- 
9 N E C O N =  
0 C O N N T -  
0 C O N N T =  
0 C O N U T =  
0 € Q U N T =  
0 C b N N T =  
0 C O N N T -  
0 C O N N T =  
0 C O N N T =  
0 C O N N T o  
1 N E C O N =  
0 C O N N T -  
0 
1 N E C O U -  
0 C O N N T -  
1 N E C O U =  
0 C O N N T =  
1 N E C O U -  
0 C O U N T =  
0 
1 N E C O N =  
0 C O N N T =  
1 N E C O N =  
0 C O N N T X  
1 N E C O N -  
0 C O N N T E  
1 U E C O N =  
0 C O N N T -  

7 
0 
0 
0 
0 
0 
0 
1 
2 
2 
2 
2 
2 
2 

0 
0 
0 

0 
0 

0 

0 

0 
0 
0 
0 

0 
0 

0 

-3 
-3 
-3 
-3 
-3 
-3 
-3 

0 
1 
7 

0 
7 
0 
7 
1 
7 

0 
7 
0 
7 
0 
0 
0 
0 

c - 3  



> T S l G 2 2  
T S l G 2 2  

> T S l G 2 3  
T S l G 2 3  
T S 1 G 2 3  
T S l G 2 3  
T S l G 2 3  

> T S  1 G 2  4 
T S l G 2 4  

> T S  1G 2 5 
T S l G 2 5  

> T S  1 G 2  6 
T S l G 2 6  
T S l G 2 6  
T S l G 2 6  
T S l G 2 6  

> T S l G 2 7  
T S l G 2 7  

> T S  2 FO 0 
T S 2 F O O  
T S 2 F O O  
T S 2 F O O  

> T S 2 F O 1  
T S 2 F O l  
T S 2 F O l  
T S 2 F O 1  

> T S 2 F O 2  
T S 2 F 0 2  
T S 2 F 0 2  
T S Z F O 2  

> T S 2 F O  3 
T S 2 F 0 3  
T S 2 F 0 3  
T S 2 F 0 3  

> T S 2 F 0 4  
T S 2 P 0 4  
T S 2 F 0 4  
T S 2 F 0 4  

> T S 2 P 0 5  
T S 2 F 0 5  
T S 2 F 0 5  
T S 2 F 0 5  

> T S 2 F 0 6  
T S 2 F 0 6  
T S 2 F 0 6  
T S 2 F 0 6  

> T S 2 F 0 7  
T S 2 F 0 7  
T S 2 F 0 7  
T S 2 F 0 7  

> T S  2 F O 8  
T S 2 F 0 8  
T S 2 F O 8  
T S 2 F O 8  
T S 2 F 0 8  

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 
0 
0 

0 

0 

0 

0 
0 

0 

0 
0 

0 

0 

0 

0 

0 

0 

0 

0 
0 

0 

0 
0 

0 

0 

0 
0 
0 
0 

0 
0 
0 

0 

0 

0 

0 

0 

0 
0 

0 

0 

0 
0 
0 

0 
0 

C L A S S =  
Z N A U E =  
C L A S S =  
Z N A M E s  
Z N A M E -  
c s n s P =  
csnsrs 
C L A S S =  
Z N A M E =  
C L A S S =  
Z N A M E =  
C L A S S =  
Z N A M E =  
c s n s P =  
C S M S F =  
C S M S F =  
C L A S S =  
Z N A M E =  
C L A S S =  
F F V A L r  
R E 

Z N A M E =  
C L A S S -  
F P V A L =  
R 
Z N A M E -  
C L A S S =  
P P V A L =  
R = 
Z N A M E a  
C L A S S -  
F F V A L =  
R 
Z N A M E =  
C L A S S =  
F F V A L =  
R 
Z N A M E =  
C L A S S =  
F F V A L =  
R 
Z N A M E -  
C L A S S =  
F F V A L =  
R 
Z N A M E =  
C L A S S =  
F F V A L =  
R 
Z N A M E =  
C L A S S =  
P F V A L =  
R 

Z N A M E =  
C S M S F =  

- - 

- 

- - 

- 

- 

- 

- 

1 T Y P E  = 5 V A L U E =  
T S l G 2 3  

1 T Y P E  = 5 V A L U E =  
T S l G 2 4  
T S l G 2 5  

0 R E G N O = 2 8 0  B I T N O =  
0 R E G N 0 = 2 8 1  B I T N O =  
1 T Y P E  = 1 V A L U E =  

T S l G 2 4  
1 T Y P E  5 V A L U E =  

T S l G 2 6  
1 T Y P E  = 5 V A L U E =  

T S l G 2 7  
0 R E G N 0 = 2 8 0  B I T N O =  
0 R E G N O n 2 8 1  B I T N O -  
0 R E G N O s 2 8 1  B I T N O =  
1 T Y P E  = 1 V A L U E =  

T S 1 G 2 7  
2 T Y P E  = 0 V A L U E =  

1 2  
0 

2 
7 2  
0 

2 
7 2  
0 

2 
7 2  
0 

2 
7 2  
0 

2 
7 2  
0 

2 
1 2  
0 

2 
7 2  
0 

2 
7 2  
0 

0 

u = o  
F P T S 2 F O O  
T Y P E  I 0 

u = o  
F P T S 2 F O  1 
T Y P E  = 0 

u = o  
F P T S  2 P O  2 
T Y P E  = 0 

U = o  
F P T S  2PO 3 
T Y P E  = 0 

u = o  
F P T S 2 F 0 4  
T Y P E  = 0 

u = o  
F P T S 2 P 0 5  
T Y P E  = 0 

u = o  
F P T S  2 F 06 
T Y P E  = 0 

U = o  
F P T S  2 F O  7 
T Y P E  = 0 

U = o  
F P T S Z F O B  
R E G N O =  7 

V A L U E =  

V A L U E =  

V A L U E =  

V A L U E =  

V A L U E =  

V A L U E =  

V A L U E =  

V A L U E =  

B I T N O =  

9 N I C O N =  
R E V E R =  

9 N I C O N =  
R E V E R =  
R E V E R =  

1 7  R E V E R =  
1 5  R E V E R S  
1 N I C O N =  

R E V E R S  
9 N I C O N =  

R E V E R S  
9 N I C O N =  

R E V E X =  
1 7  R E V E X =  
1 7  R E V E R =  
16 R E V E R =  
1 N I C O N =  

R E V E R =  
9 N I C O N =  

R E V E R =  
9 N I C O N =  

R E V E R =  
9 N I C O N =  

R E V E R -  
9 N I C O N =  

R E V E R =  
9 N I C O N =  

R E V E R =  
9 N I C O N =  

R E V E R r  
9 N I C O N =  

R E V E R =  
9 N I C O N =  

R E V E R S  
0 N I C O N =  

R E V E R S  
4 R E V E R S  

1 N E C O N =  
0 C O N N T =  
2 N C C O N =  
0 C O N N T =  
0 C O N N T =  
0 
0 
1 N E C O N =  
0 C O N N T =  
1 N E C O N =  
0 C O N N T =  
1 N E C O N =  
0 C O N N T =  
0 
0 
0 
1 N E C O N =  
0 C O N N T o  
1 N E C O N =  

1 C O N N T =  
1 N E C O N =  

1 C O N N T =  
1 U C C O l =  

1 C0NNT.r 
1 N E C O N i  

1 C O N N T =  
1 N E C O N =  

1 CONIUT- 
1 N E C O N -  

1 C O N N T =  
1 N E C O N =  

1 C O N N T =  
1 N E C O N l  

1 C O N N T =  
0 

0 
0 

2 

0 

0 

0 

0 
0 

0 
3 
0 

0 
0 
0 

0 
0 

0 
0 

0 

0 

0 
0 

0 
0 

0 
0 

0 

0 

0 
1 

0 

c - 4  



, T S % F ~ ~  
+r :: P o 1 1  

T ! ; I F O V  

TSLFOI) 
T S Z F 0 9  

> T S  2 F 1 0  
T S 2 F l O  
T S 2 F 1 0  
T S 2 F l O  
T S 2 F l O  

> T S Z G O O  
T S 2 G O O  
T S Z G O O  
T S Z G O O  
T S Z G O O  
T S Z G O O  

> T S Z G O l  
T S  2GO 1 
T S  2 0 0  1 

> T S Z G O  2 

T S  2GO 2 

T S 2 G 0 2  
> T S 2 G 0 3  
T S Z G 0 3  

0 

0 

0 

0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 

0 

0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

C I . A S S =  

I V V A I .  

I( - 
Z N A M E =  
C S M S F =  
C L A S S =  
F F V A L =  
R = 
?.NAME= 
C S M S F -  
C L A S S =  
Z N A M E =  
Z N A M E =  
Z N A M E =  
Z N A M E =  
C S M S F =  
C L A S S =  
Z N A M E =  
C S M S F =  
C L A S S =  
Z N A M E =  
C S M S F =  
C L A S S =  
Z N A M E =  
C S M S F -  
C L A S S =  
Z N A M E =  
Z N A M E =  
Z N A M E =  
Z N A M E =  
Z N A M E =  
Z N A M E =  
Z N A M E  = 
Z N A M E =  
C S M S F =  
CLASS.: 
Z N A M E =  
Z N A M E =  
Z N A M E =  
Z N A M E =  
C S M S F =  
C L A S S =  
Z N A M E =  
C S M S F =  
C L A S S =  
Z N A M E -  
C S M S F =  
C L A S S =  
Z N A M E =  
C S M S P r  
C L A S S =  
Z N A M E =  
C L A S S =  
Z N A M E =  
C L A S S =  

7 

1 2  

n 

T Y P E  = 0 V A L U E =  0 N I  C O N =  1 N E C O N =  1 

U n 
F f T S  2 FO 9 
R E G N O =  7 

T Y P E  = 0 

N E V E R =  
R E V E R =  
N I C O N =  

1 C O N N T =  0 
0 
1 N E C O N =  1 

0 
2 

1 2  
0 

B I T N O =  
V A L U E =  

5 

0 

U = o  
F P T S  2 F 1 0  
R E G N O =  7 
T Y P E  = 5 
T S 2 G 2 7  
T S 2 G 3 5  
T S 2 G 3 9  
T S Z F O O  
R E G N O =  7 
T Y P E  = 5 
T S 2 P O l  
R E G N O =  7 
T Y P E  = 5 
T S 2 F O 2  
R E G N O =  7 
T Y P E  = 5 
T S 2 F 0 3  
R E G N O =  7 
T Y P E  = 5 
T S 2 F O O  
T S 2 F O l  
T S 2 F 0 2  
T S 2 F 0 3  
T S 2 F 0 4  
T S 2 F 0 5  
T S 2 F 0 6  
T S 2 F 0 7  
R E G N O =  7 
T Y P E  = 5 
T S 2 G 3 1  
T S 2 G 3 3  

T S 2 G 3 7  
T S 2 F 0 4  
R E G N O =  7 
T Y P E  = 5 
T S 2 F 0 5  
R E G N O =  7 
T Y P E  = 5 
T S 2 F 0 6  
R E G N O =  7 
T Y P E  = 5 
T S 2 F 0 7  
R E G N O =  7 
T Y P E  = 1 
T S 2 G 1 5  
T Y P E  = 1 
T S 2 G 1 5  
T Y P E  = 1 

R E V E R E  
R E V E R =  
N I C O N =  
R E V E R =  
R E V E R =  
R E V E R =  
R E V E R E  
R E V E R =  
N I C O N =  
R E V E R =  
R E V E R S  
N I C O N =  
R E V E R =  
R E V E R =  
N I C O N =  
R E V E R =  
R E V E R =  
N I C O N =  
R E V E R =  
R E V E R =  
R E V E R =  
R E V E R -  
R E V E R =  
R E V E R =  
R E V E R =  
R E V E R -  
R E V E R =  
N I C O N =  
R E V E R =  
R E V E R =  
R E V E R =  
R E V E R =  
R E V E R =  
N I  C O N =  
R E V E R =  
R E V E R =  
N I  C O N =  
R E V E R =  
R E V E R E  
N I C O N =  
R E V E R =  
R E V E R =  
N I C O N =  
R E V E R =  
N I C O N =  
R E V E R -  
N I C O N =  

1 C O N N T =  0 
0 
4 N E C O N w  1 
0 C O N N T =  0 
0 C O N N T =  0 
0 C O N N T =  0 
0 C O N N T =  7 
0 
1 N E C O N =  1 
0 C O N N T =  7 
0 
1 N E C O N =  1 
0 C O N N T =  7 
0 
1 N E C O N =  1 
0 C O N N T u  7 
0 
8 N E C O N I  1 
0 C O N N T s  - 3  
0 C O N N T =  -3 
0 C O N N T z  -3 
0 C O N N T s  -3 
0 C O N N T =  -3 
0 C O N N T =  -3 
0 CONN'l'= -3 
0 C O N N T m  -3 
0 
4 N E C O N =  1 
0 C O N N T =  0 
0 C O N N T L  0 
0 C O N N T i  0 
0 C O N N T =  7 
0 
1 N E C O N =  1 
0 C O N N T =  7 
0 
1 N E C O N =  1 
0 C O N N T =  7 
0 
1 N E C O N =  1 
0 C O N N T =  7 
0 
1 N E C O N o  0 
0 C O N N T =  0 
1 N E C O N =  0 
0 C O N N T =  0 
1 N E C O N =  0 

0 
1 

B I T N O =  
V A L U E =  

6 
9 

0 
1 

B I T N O =  
V A L U E =  

7 
9 

0 
1 

B I T N O =  
V A L U E =  

8 

9 

0 
1 

B I T N O =  
V A L U E =  

9 
9 

0 
1 

1 0  
9 

T S 2 G 0 3  
> T S  Z G 0 4  
T S 2 G 0 4  
T S Z G 0 4  
T S Z G 0 4  
TS.2GO 4 
T S 2 G 0 4  
T S Z G 0 4  
TS2GO.I 
TS2GO.1 
T S 2 G 0 4  

> T S 2 G 0 5  
T S 2 G 0 5  
T S 2 G 0 5  
T S  2 G O  5 
T S 2 G 0 5  
T S 2 G 0 5  

> T S 2 G 0 6  
T S 2 G 0 6  
T S 2 G 0 6  

> T S 2 G 0 7  
T S 2 G 0 7  
T S 2 G 0 7  

> T S 2 G 0 8  
T S Z G O B  
T S Z G 0 8  

> T S Z G 0 9  
T S 2 G 0 9  

> T S  2 G 1 0  
T S 2 G 1 0  

> T S 2 G 1 1  

B I T N O =  
V A L U E =  

0 
1 

1 1  
9 

B I T N O =  
V A L U E =  

0 
1 

B I T N O =  
V A L U E =  

1 2  
9 

0 
1 

B I T N O =  
V A L U E =  

1 3  
9 

0 
1 

B I T N O -  
V A L U E =  

1 4  
9 

0 
1 

B I T N O =  
V A L U E =  

1 5  
9 

1 V A L U E =  9 

1 V A L U E =  9 

c - 5  



T S 2 G l l  
> T S L G 1 2  

'r!; > I ,  I ,J 
> T S 2 G 1 3  

T 5 7 r ; i  3 

, ' r . s / f ; J  1 
T S  2 1 9  1 9  

> T S Z G 1 5  
T S 2 G 1 5  

> T S 2 G 1 6  
T S 2 G 1 6  
T S 2 G 1 6  
T S 2 G 1 6  

> T S 2 G 1 7  
T S 2 G 1 7  

> T S 2 G 1 8  
T S 2 G 1 8  

> T S 2 G 1 9  
T S 2 G 1 9  

> T S 2 G 2 O  
T S 2 G 2 O  

> T S 2 G 2 1  
T S 2 G 2 1  

> T S Z G 2 2  
T S 2 G 2 2  

> T S  2 G 2  3 
T S 2 G 2 3  

> T S  2 G 2  4 
T S 2 G 2 4  
T S 2 G 2 4  
T S 2 G 2 4  

> T S 2 G 2 5  
T S 2 G 2 5  
T S 2 G 2 5  

> T S  2G 2 6 
T S 2 G 2 6  

> T S 2 G 2 7  
T S 2 G 2 7  

> T S 2 G 2 8  
T S 2 G 2 8  

> T S  2G 2 9 
T S 2 G 2 9  

> T S  2G 3 0 
T S 2 G 3 0  

> T S  2G 3 1 
T S 2 G 3 1  

> T S 2 G 3 2  
T S 2 G 3 2  

> T S 2 G 3 3  
T S 2 G 3 3  

> T S 2 G 3 4  
T S 2 G 3 1  

> T S  2G 3 5 
T S 2 G 3 5  

> T S 2 G 3 6  

0 

0 
0 

0 

0 

0 

0 

0 

0 

0 

0 

0 
0 

0 
0 

0 

0 
0 

0 

0 

0 

0 
0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 
0 

0 

0 

0 

0 

0 

0 

0 
0 

0 

0 

0 

0 

0 

0 
0 

0 

0 

0 

0 

0 

0 

Z N A M E =  
C I . A S  S 

Z N A M E  
C L A S S =  
Z N A M E - :  

c I ,  l, S S = 

Z N A M E =  
C L A S S =  
Z N A M E -  
C L A S S =  
Z N A M E =  
Z N A M E =  
Z N A M E =  
C L A S S =  
Z N A M E =  
C L A S S =  
Z N A M E =  
C L A S S =  
?,NAME= 
C L A S S =  
ZNAME.: 
C L A S S =  
Z N A M E =  
C L A S S =  
Z N A M E =  
C L A S S -  
Z N A M E =  
C L A S S =  
Z N A M E -  
Z N A M E -  
Z N A M E =  
c LA s s = 
Z N A M E =  
C S M S F =  
C L A S S =  
2 N A14E = 
C L A S S =  
Z N A M  E = 
C L A S S =  
Z N A M E =  
C L A S S =  
Z N A M E =  
C L A S S =  
Z N A M E r  
C L A S S =  
Z N A M E =  
C L A S S =  
Z N A M E =  
C L A S S =  
Z N A M E =  
C L A S S =  
Z N A M E =  
C L A S S =  
Z N A M E =  
C L A S S =  

1 T Y I' F: 
1's 2 ti 

1 T Y P E  
TS L G  

1 ' T Y P E  

T S  2G 
1 T Y P E  

T S 2 G  
1 T Y P E  

T S 2 G 2 6  
T S 2 G 3 6  
T S 2 G 3 9  

1 T Y P E  = 
T S 2 G 2 3  

1 T Y P E  = 
T S 2 G 2 3  

1 T Y P E  = 
T S 2 G 2 3  

1 T Y P E  = 
T S 2 G 2 3  

1 T Y P E  = 
T S 2 G 2 3  

1 T Y P E  = 
T S 2 G 2 3  

1 T Y P E  = 
T S 2 G 2 4  

1 T Y P E  = 
T S 2 G 3 0  
T S 2 G 3 4  
T S 2 G 3 7  

1 T Y P E  = 
T S 2 G 2 6  

0 R E G N O =  
1 T Y P E  = 

T S 2 G 2 8  
1 T Y P E  = 

T S 2 G 2 8  
1 T Y P E  = 

T S 2 F 0 8  
1 T Y P E  = 

T S 2 G 3 0  
1 T Y P E  = 

T S 2 G 3 2  
1 T Y P E  = 

T S 2 G 3 2  
1 T Y P E  = 

T S 2 F 0 9  
1 T Y P E  = 

T S 2 G 3 8  
1 T Y P E  = 

T S 2 G 3 8  
1 T Y P E  = 

T S 2 G d O  
1 T Y P E  = 

QUALITY 

1 V A L U E =  

1 V A L U E =  

1 V A L U E =  

3 V A L U E =  

5 V A L U E =  

1 V A L U E =  

1 V A L U E =  

1 V A L U E =  

1 V A L U E =  

1 V A L U E =  

1 V A L U E =  

3 V A L U E =  

5 V A L U E =  

5 V A L U E =  

7 B I T N O =  
1 V A L U E -  

1 V A L U E =  

3 V A L U E =  

5 V A L U E =  

1 V A L U E =  

1 V A L U E =  

3 V A L U E =  

5 V A L U E =  

5 V A L U E =  

5 V A L U E =  

5 V A L U E =  

R E V E R =  
9 N I C O N I  

LIEVER= 
9 N I C O N =  

R E V E R =  
9 N I C O N =  

R E V E R =  
9 N I C O N =  

R E V E R =  
9 N I C O N =  

R E V E R =  
R E V E R =  
R E V E R S  

9 N I C O N =  
R E V E R -  

9 N I C O N i  
R E V E R -  

9 N I C O N =  
R E V E R =  

9 N I C O N =  
R E V E R r  

9 N I C O N =  
R E V E R =  

9 N I C O N i  
R E V E R =  

9 N I C O N -  
R E V E R =  

9 N I C O N =  
R E V E R =  
R E V E R =  
R E V E R =  

9 N I C O N =  
R E V E R E  

1 6  R E V E R =  
9 N I C O N =  

R E V E R =  
9 N I C O N =  

R E V E R =  
9 N I C O N =  

R E V E R =  
9 N I C O N =  

R E V E R =  
9 N I C O N =  

R E V E R S  
9 N I C O N i  

R E V E R =  
9 N I C O N =  

R E V E R r  
9 N I C O N E  

R E V E R =  
9 N I C O N =  

R E V E R =  
9 N I C O N =  

R E V E R S  
9 N I C O N =  

0 C O N N T n  
1 N E C O N =  
0 C O N N T =  
1 N E C O N =  
0 C O N N T =  
1 N E C O N =  
0 C O N N T n  
1 N E C O N =  
0 C O N N T m  
3 N E C O N =  
0 C O N N T =  
0 C O N N T =  
0 C O N N T =  
1 N E C O N =  
0 C O N N T -  
1 N E C O N I  
0 C O N N T =  
1 N E C O N =  
0 C O N N T -  
1 N E C O N =  
0 C O N N T =  
1 N E C O N =  
0 C O N N T -  
1 N E C O N r  
0 C O N N T =  
1 N E C O N E  
0 C O N N T =  
3 N E C O N m  
0 C O N N T I  
0 C O N N T =  
0 C O N N T =  
1 N E C O N =  
0 C O N N T n  
0 
1 N E C O N -  
0 C O N N T =  
1 N E C O N =  
0 C O N A T =  
1 N E C O N =  
0 C O N N T =  
1 N E C O N =  
0 C O N N T P  
1 N E C O N =  
0 C O N N T -  
1 N E C O N =  
0 C O N N T n  
1 N E C O N i  
0 C O N N T a  
1 N E C O N =  
0 C O N N T =  
1 N E C O N =  
0 C O N N T t  
1 NECON;. 
0 CONNTn: 
1 N E C O N =  

0 

0 

0 

0 

0 

0 

0 
0 
0 

0 

0 
0 
0 
0 
0 
0 

0 
0 

0 
0 
0 
0 
0 

0 
0 

0 

0 

0 
0 

0 

0 

1 
0 

0 
0 
0 

0 

0 
7 
0 
0 
0 
0 

0 

0 
0 
7 
0 

0 

0 
0 

0 
0 

0 

C - 6  



T S 2 G 3 h  
) 'r I: ? r; 
T S L G 3 7  

> T S  2G3 8 

T S 2 G 3 6  
)T*J2G39 
T S 2 G 3 9  

> T S 2 G 4 0  
T S 2 G 4 0  

> T S 2 G 4  1 
T S 2 G 4 1  

> T S 2 G 4 2  
T S 2 G 4 2  

> T S 2 G 4 3  
T S 2 G 4 3  
T S 2 G 4 3  
T S 2 G 4  3 
T S Z G 4 3  
T S Z G 4 3  

> T S 2 G 4 4  
T S 2 G 4 4  

> T S 2 G 4  5 
T S 2 G 4 5  
T S 2 G 4 5  
T S 2 G 4 5  
T S 2 G 4 5  

> T S 2 G 4 G  
T S 2 G 4 6  

) T S 2 G 4 7  
T S 2 G 4 7  
T S 2 G 4 7  
T S 2 G 4 7  

> T S  2G 4 8 

T S 2 G 4 8  
> Z Z Z F A U L T E R  
Z Z Z F A U L T E R  
Z Z Z F A U L T  E R 
Z Z Z F A U L T E R  
Z Z Z F A V L T E R  
Z Z Z F A U L T E R  
Z Z Z F A U L T E R  
Z Z Z F A U I T E P  
Z Z Z F A U L T E R  
Z Z 2 F A U  L T E  R 
Z Z Z F A U L T E R  
Z Z Z F A U L T E R  
Z Z Z F A U L T E R  
Z Z Z F A U L T E R  
Z Z Z F A U L T E R  
Z Z Z F A U L T E R  
Z Z Z F A U L T E R  
Z Z Z F A U L T E R  
Z Z Z F A U L T E R  
Z Z Z F A V L T E R  
Z Z Z F A U L T E R  

0 
0 

0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
1 

L O  
10 
10 
1 0  
1 0  
L O  
1 0  
1 0  
1 0  
10 
1 0  
10 
1 0  
1 0  
1 0  
1 0  
1 0  
1 0  
10 
10 

Z N A M E =  

f .  I .  A!: !; = 

Z N A M E =  
C L A S S =  
Z N A M E =  
C L. A S S = 
Z N A M E -  
C L A S S =  
Z N A M E =  
C L A S S =  
Z N A M E =  
C L A S S =  
Z N A M E =  
C L A S S =  
Z N A M E =  
Z N A M E =  
Z N A M E =  
Z N A M E =  
C S M S P =  
C L A S S =  
Z N A M E =  
C L A S S =  
Z N A M E =  
Z N A M E =  
Z N A M E =  
Z N A M E =  
C L A S S =  
?.NAME= 
C L A S S =  
Z N A M E =  
C S M S F =  
C S M S F =  
C L A S S =  
Z N A M E =  
C L A S S =  
Z N A M E =  
Z N A M E =  
Z N A M E =  
Z N A M E =  
Z N A M E =  
Z N A M E =  
ZNA?IE= 
Z N A M E =  
Z N A M E =  
Z N A M E =  
Z N A M E r  
Z N A M E r  
Z N A M E r  
2 N A M E  = 
Z N A M E m  
Z N A M E s  
Z N A M E =  
Z N A M E e  
Z N A M E -  
Z N A M E =  

CjNGINfi  PAGE IS 
OF POOR QUALITY 

T S 2 G 4 0 
1 'I' Y I' E -- 

T S 2 G 4  1 
1 T Y P E  = 

T S 2 G 4 1  
1 T Y P E  = 

T S 2 G 4 1  
1 T Y P E  = 

T S 2 G 4 1  
1 T Y P E  = 

T S 2 G 4 2  
1 T Y P E  = 

T S l F l O  
1 T Y P E  = 

T S 2 F 0 8  
T S 2 F 0 9  
T S 2 F 1 0  
T S  2G4 6 

0 R E G N O =  
1 T Y P E  = 

T S 2 G 4 4  
1 T Y P E  = 

T S 2 G 2 7  
T S 2 G 2 5  
T S 2 G 2 9  
T S 2 G 3 1  

1 T Y P E  = 
T S 2 G 4 7  

1 T Y P E  = 
T S 2 G 4 0  

I V A L I I E -  

1 V A L U E =  

1 V A L U E =  

1 V A L U E =  

3 V A L U E =  

5 V A L U E =  

5 V A L U E =  

7 B I T N O =  
1 V A L U E =  

5 V A L U E =  

5 V A L U E =  

5 V A L U E =  

0 R E G N O = 2 0 O  B I T N O =  
0 R E G N O = 2 8 1  B I T N O =  
1 T Y P E  = 1 V A L U E =  

T S 2 G 4 8  
I T Y P E =  1 V A L U E =  

Z Z Z Z D U M M Y  
Z Z Z Z D U M M Y  
zzz z D U M M Y  

Z Z Z Z D U M M Y  
2 Z 2 Z D U M M Y  
Z Z Z Z D U M M Y  
Z Z Z Z D U M M Y  
2 Z 2 Z D U M M Y  
z z 2 Z D U M M Y  
Z Z Z Z D U M M Y  
Z Z 2 Z D U M M Y  
Z Z Z 2 D U M M Y  
Z 2 Z Z D U M M Y  
ZZ Z Z D U M M Y  
2 2 Z Z D U M M Y  
Z Z Z 2 D U M M Y  
Z Z Z Z D U M M Y  

z Z Z Z D U M M Y  
z z z z D U M M Y  
Z Z Z Z D U M M Y  

R KV E R =  

1) N r (- o N -: 
R E V E R =  

9 N I C O N =  
R E V E R t  

9 N I C O N =  
R E V E R -  

9 N I C O N =  
R E V E R =  

9 N I C O N =  
R E V E R =  

9 N I C O N =  
R E V E R =  

9 N I C O N =  
R E V E R =  
REVER.; 
R E V E R =  
R E V E R =  

1 7  R E V E R S  
9 N I C O N =  

R E V E R =  
9 N I C O N r  

R E V E R =  
R E V E R =  
R E V E R E  
R E V E R E  

9 N I C O N =  
R E V E R S  

0 N I C O N r  
R E V E R =  

17 R E V E R S  
1 4  R E V E R =  
9 N I C O N s  

R E V E R S  
0 N I C O N =  

R E V E R =  
R E V E R =  
REVER.; 
R E V E R =  
R E V E R =  
R E V E R -  
R E V E R =  
R E V E R =  
S E V E R =  
R ~ V E R =  
R E V E R =  
R E V E R i  
R E V E R =  
R E V E R =  

' R E V E R =  
R E V E R -  
R E V E R =  
R E V E R =  
R E V E R =  
R E V E R -  

0 C O N N T =  
1 N E C O N =  
0 C O N N T r  
1 N E C O N =  
0 C O N N T -  
1 N E C O N =  
0 C O N N T =  
1 N E C O N =  
0 C O N N T =  
1 N E C O N =  
0 C O N N T -  
1 N E C O N =  
0 C O N N T =  
4 N E C O N =  
0 C O N N T =  
0 C O N N T =  
0 C O N N T -  
0 C O N N T =  
0 
1 N E C O N =  
0 C O N N T =  
4 N E C O N =  
0 C O N N T =  
0 C O N N T =  
0 C O N N T =  
0 C O N N T =  
1 N E C O N =  
0 C O N N T =  
1 N E C O N =  
0 C O N N T -  
0 
0 
1 N E C O N =  
0 C O N N T =  

3 0  N E C O N =  
0 C O N N T =  
0 C O N N T =  
0 C O N N T =  
0 C O N N T =  
0 C O N N T =  
0 C Q N N T =  
0 C O N N T =  
0 C O N N T =  
0 C O N N T =  
0 C O N N T =  
0 C O N N T =  
0 C O N N T =  
0 C O N N T =  
o C'ONNTS 
0 C O N N T =  
0 C O N N T =  
0 C O N N T =  
0 C O N N T =  
0 C O N N T =  
0 C O N N T =  

- 

0 

0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
7 
1 

- 3  
- 3  
- 3  

0 

0 

0 
0 
0 
0 
0 

0 
0 
0 
2 
0 

0 
0 
1 
0 
a 
0 
0 
0 
0 
0 
0 
0 
8 
0 
0 
8 

8 
0 
0 
0 

0 
8 

0 

c - 7  



i 
I ’  

Z Z Z F A U L T E R  
Z ‘I. Z F’ h II LT t: I( 

Z Z Z F A l l  LT & I t  

Z Z Z F A U L T E R  
Z Z 7, F A II L T E H 
Z Z Z F A l l  I , T t  It 

Z Z Z F A U L T E R  
Z Z Z F A U L T E R  
Z Z Z F A U L T E R  
Z Z Z F A U L T E R  
Z Z Z F A U L T E R  

> Z Z Z Z D U M M Y  
Z Z Z Z D U M M Y  
Z Z 2 2 D U M M Y  

1 0  
I O  
1 0  
10 
10 
10 
1 0  
1 0  
1 0  
1 0  
11 
1 

10 
1 1  

z z z z D u n n Y  
zzzz DunuY 
ZzzznunMY 
z z z z DUMMY 

z z z z D vn n Y 

Z z z z D u n n Y  
z z z z DUMMY 
z z z z DunnY 
z z z z  DunnY 

ZZZZDUMMY 

0 R E G N O =  1 2  
1 T Y P E =  1 

z z z z D u n n Y  
0 R E G N O =  1 3  

R E V E R -  
H E V E H =  
R E V E R =  
R E V E R r  
R E V E N =  
R E V E R m  
R E V E R S  
R E V E R =  
R E V E R x  
R E V E R =  

B I T N O =  0 R E V E R I  
V A L U E =  0 N I C O N =  

R E V E R S  
B I T N O =  0 R E V E R =  

0 

0 

0 

0 

0 

0 

0 

0 
0 
0 
0 
1 
0 
0 

C O N N T =  
C O U N T =  

COUNT= 
C O U N T =  
C O U N T =  
C O U N T =  

C O U N T -  
C O U N T =  

C O U N T =  
CONNTI 

N E C O N =  
C O U N T =  

8 
8 
8 

8 
8 

8 

8 
8 
8 
8 

1 
0 

1 

c - 8  



\ 

Appendix D 
Sanple m a t i o n  Text Outputs 



8 

.. . 

I -  

* ,  - 
1. :. 

. .  . .  
, ' . 

* .  

, i . .  

L C  c li b 

4 

I 
Y 

ur 
Y 
0 a- 
C X  ur 
-9 >a 

2 

'3 
-(Y 

- 
L. 

e 

I c 

. .  
Le 

e -b- 

h 

L 

I 
I 
L 

2 
C 
L 

c > 
C 

: 

I 
w 

II) 
E 
Y 

C X X X  
u) 

L Y  

- m W  

h 

-rvn 

I c: 

r. 
c .  
c 

z 
L 

2 < 
L 

CeP 
r t t w  

-rc 
M 

r -a6 

W 
h: 

Y) 
L. 

> 
< 
1. *' 
1 

c 
3 
a# 
c 

P 
0 
V 

c 
f .. 
c 
I z 
L' 

2 e 
L 

$ 
C 
r. 
r: 
- 
I 
2. 
Y 

a 
w 
N 
a 
(A 

I 

i 
I 
8 



1 '  

w 

I- 
E 

1- 

rc 
a? 

I 

~ . .  
w c 
d ...* 

../ . -.. '. TV'.  ' 

.. L 

. '  I- 
c *  

!' . - - E  

. Ti5 
.) 

t- c t t c t- t- c r I 

*.:.-**rc..:.. e: 
+ I L 

s 
3 
(0 
VI 

W 
C 

a. 
L 
0 

C 

3 
c 
E 

.c 
3 

3 

L 

2' 

- 
5 
3 c 
3 
0 
0 
i 
9 
m 

W az 
" 

a 
a 
3 

c 

E 

C 
I- 

C. 

v: 
A' 
V 
G 
+, 
v) 

h - 

C 
3 

OL 

s 
tn 

" 
x 
V c 

n 
3 
3 

c 
0 
L 

c 

a 

e 
v) 

A 

c 
-I = 
4 
LL 

L.l 

L 
a 
n - - :-. N m N p. 
E 
2 c 

C 
3 
C 

I 
La 
E 
c 

kU 
t. 
L', 

C 
L 

i. - 
i' 

Vh c- 

t. 

h: 

c 

h 

4 

t 

e 

h 

c 

a 

I 
I 

I "  
0 5 1  
t 
3 
v 
r 
0: 
L 
c c. 
a 
I 
I 
I 
I 

!!@ 

NB 
r. 

* a  c 

a? 
e3 

l- 
" 

?! 
s 
f 
" 
w 

I- 
h 
OD 
I 

f 
m 

" 
W 
I- 
d 

h 

a 
C 
E 

. .. . .. 

OrnGDML PAGE IS 
OF POOR QUALITY 



a a a 4 a m m a - a - & " e l  

I I I I I I I 
I I I I I I I 
I 
I 
P I  
E 
a a 

: a  
I 

E 
Le 
a n 

I 
I 

l a  
I 
I l a  

I 

I a  
I 

E 
n 

ha l e  
1 
I 

La 
5 a 

n- 
E 
n 

6- 
5 
0 

6- 
E 

l I I I I I 

4 
0 

r;; 

P 
E 
3 
0 

& 

n 
E 
a 
n 

e 

n 
E 

a a 

n 
E 
a 
n 
I 

P 

5 
a 
B 

0 

a' 
L 
C' - 
4 
V : L  

C 

u 0 
L 
0 -  
4J 
v) 

r 

u 
L 
0.- 
4J 
b4 

r 

a u u 
L 
G -  
4J 
v) 

r 

ba 
& 
tn 

L 
O t  
4 
VJ 

L 

4 
(0 

0 4  

0' 
3 

: 
3 

b 
3 

L 
0 
3 

L 
c 
*' c r c 



c 
h' 
I 

B 
L1 

" 
W 

b - 4  
a 

' I F ;  

& L  

S ?  

L W  

L L  

5 2  

" 
I 
V 
I- * m 

.. I 

4 1 .  
L C 

a 
t G c  D - 4  

N 
N 

c 
Ip 
c 

W 

c 
h 
ob 
I 

f, 

0, 

" 
w 
C 

n a ORIGINAL PAGE IS 
KXt EDOR QUALITY 



.. 

0WXIW.L PAGE l8 
OF PO08 QUALITY 

a 

I 
1 

. ..- 



(I . J  c c 

ORIGINAL PAGE IS 
QUALITY 

._ . 
r. 

wl 
Lc- > 

@ 
(u 6 3  

a a 
I: e 
W -  
N- 

a- 

P 

4-8- 

"2 
a- 
=!? 
X- 

P- 

LI 

Ip @ *  
W m  
Nb 
-ID 

L 
x 
m 

v ) d  

I 

- 

rc, 

Q) 
d a 

X 
w 
z 

... 

X 

r a 'c: 
h C  

-9EL k 

L 
Q n 
5 
E 

c 
p: 
a 

I .  a 

A 
3 

a 
U- 

3 
Q u 

r 

a 

a 

$ c 
v) 

S 
V 
I- < 
m 

D -.6 



a 

Q 

Q 

b 

a 

a 

Q 

a 

a 

a 

I 

t r ,  

P 

b 

3 
c) 

ua 

4 
w 
r 
a 
O &  
V 

-4 
I 
I 
I 
I 

h C  

he 

mm 
I- 

m 
a 
e., 
L 
U 
P 

ONGmAI, PAGE IS 
POOR QUALITY 

li 
s- 

s- 
a 

C b Q  

5 
X 
W 

I 
Lu 
N 
LI 

- f  T!? f E - E  - - -  

.. 
Y 
f 
c 

1 h 
0 

Q, 

a 
w c 
d 



u v  
L L  8 C I -  

r 
b. 
V 

> 
e 
0 

c 

e 
a 
L 
+, 

s 
v) 

I I I  
W Y  

m- -* c j  E- 
- . * ... Y x .% 

. ._ . .* 



ORZrXAZL P-iGE IS 
QF POOR QUAJJTX 

C 

* G  
d r  
h C  

c 
X 
L I  i 

c- 

V 
r, 
c: 
L L  
L 
a 



ORIGINAL PAGE IS 
OE POOR QUALITY 

a 
X w ul 

. . . .  

.- . 

ij 

1 w 

v) 

Y 

c 
Y) 

f! 

Y 

.. 
Y 
S 
+. 
h 
OD 

U 

. .; 
i .  

.... . . . . . .  . . . . . . .  _ "  . . .  - . . . . .  . . .  # . '?> ,. 
.. i . . . .  . ' _  

.. A I 

D - 9a 



, 

1' 
f 
c 
c 

- c  e -  
4 ;  
h *  

2 :  

? f  
W 

* -  ". L w 

.I+ c 
o w  
e -  

> 
b 

- K  
4 J L  

F "  
c r  
-: : L 
L 
C L L  

C -  
L E  

I I 

C - 0  
0 

4 - 04 > -  
a c a  @ a  u, o - 0 0  v >  a m  

1. . 4 

a 1 

U? w-. - 0  
6 6  



A 
c 
a 
*, 
v' 

3 
P 
a 
e- 

0 
V 

r. 
(3 

r. 
I 
2 
W 

f 

2 
W > c 
m 
0 

, 
I .  
r 
+' 
1- / 
c +' 
QI 
c c 

P 
C, 
C) 

L' > c 
u > a 

bi 
2 - 
I 
X 
L 

c 
Y 
x 
w 
L 

z n z < 
L L 

c' > < 

i 
3 
Q 
P 

D 

0 

L 

0, 
L 
C 
X 

4J 
0 
E 
x 
t' 

5 

8 
t' 
? 

3 

4J 
t 
3 

P) 

0. 

w 
2 

I 
Y 

. .  
v) 

2 
9-- - m -  

2 

f 
OE 

c - 3 -  
p: I c 

9 s -  
c) 

r I 

L: a 
w 
N 

v) 
LI 

c 

c 
c 
3 

I 
w 
E I .  

Y 

c x x x  
v) 

2 - m t  

- 0 1  

UI 

rN(3 

I 
t 

h 



Appendix E 
Terms and Abbreviations 



Terms and Abbreviations 

device 
simple gate, or regular gate 
device name 

device index number 

device address 

device identifier 

stack 

Abbrwiat ions 

ei 
eo 
cs 
ms 
*filename 

General Notes 

A gate, flip-flop or tri-state. 
An AM),OR,"D,NOR,XOR, or MOR gate. 
A 20-character name assigned by the user to the 
device 
An integer assigned to each device by the 
initialization program. The first device in 
the netlist is assigned the number 1, and 
integers are then assigned sequentially to the 
remaining devices in the order in which they 
appear in the netlist. 
The beginning QM-1 control store location 
assigned by the initialization program to hold 
the state description or "header word" (see ( ) ) 
for the device. 
For the Vax: the device index number 
For the QM-1: the device address. 
A list of device index numbers(for vax 
emulator) or device addresses(for QM-1 
emulator) of those devices whose output values 
changed during the previous time step. 

external inputs 
external outputs 
control store 
main store 
User Prefix followed by rest of file name 

Device Names 

Fortran Formats 

Radix Notation 

The user must enter a device name in Upper Case in every 
instance in which it appears in any input file. 
It is assumed in the descriptions of the input files to the 
emulator programs that the user is familiar with Fortran 
Format statements. 
All numbers in this document are assumed to be decimal, 
unless the radix is specifically noted, for example, 
"octal . 

E - 1  



Report Documentation Page 
I. Report No. 

NASA CR-178391 

2. Government Accession No. 

7. Authods) 

Bernice Becher 

20. Security Classif. (of this pagel 21. No. of pages 19. Security Classif. (of ths report) 

9. Performing Organization Name and Address 

P R C  Kentron, Inc. 
Hampton, VA 23666 

22. Price 

2. Sponsoring Agency Name and Address 

Unclassified Uncl assi f ied 

Nat iona l  Aeronaut! cs and Space Admi n i s t r a t i  on 
WashinGton, DC 20546-0001 

172 A08 

5. Supplementary Notes 

3. Recipient's Catalog No. 

~ 

5. Report Date 

December 1987 
6. Performing Organization Code 

8. Performing Organization Report No. 

IO. Work Unit No. 

505-66-21-03 
11. Contract or Grant No. 

NAS1-18000 
13. Type of Report and Period Cornred 

Contractor Report 
14. Sponsoring Agency Code 

6. Abstract 
The Diagnostic mlation Technique was developed within the System Validation 
Methods Branch as a part of the development of methods for the analysis of the 

This 
is a general technique which allows for the emulation of a digital hardware 
system. 
of the particular target hardware which is being emulated. 
are described and emulated at the logic or gate level, while other parts of the 
system are described and emulated at the functional level. 
allows for the insertion of faults into the system, and for the observation of 
the response of the system to these faults. 
accelerated testing of system reaction to hardware failures in the target 
machine. 
NASA Langley Research Center and gives instructions for using the system. 

. reliability of highly reliable, fault tolerant digital avionics systems. 

The technique is general in the sense that it is completely independent 
Parts of the system 

This algorithm 

This allows for controlled and 

This document describes in detail how the algorithm was implemented at 

I 18. Distribution Statement 17. Key Words (Sugwted by Authodsl) 
F a d  t tolerance 
f a u l t  simulation 
1 ogi c s imu 1 a t  i on 

1 Unclassified - Unlimited 


